Publication Date


Document Type

Doctoral Dissertation

Academic Program

Immunology and Microbiology



First Thesis Advisor

Jennifer P. Wang


Type 1 diabetes (T1D), type I interferon (IFN), type I interferon receptor (IFNAR), virus-induced diabetes, innate immunity in type 1 diabetes, autoimmune diabetes in rat, pancreatic islets


Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by the immune-mediated destruction of insulin-producing beta-cells of pancreatic islets, culminating in critical insulin deficiency. Both genetic and environmental factors likely orchestrate an immune-mediated functional loss of beta cell mass, leading to the clinical manifestation of disease and lifelong dependence on insulin therapy. Additional evidence suggests the role of innate and adaptive immune mechanisms leading to inflammation in beta cells mediated by proinflammatory cytokines and chemokines, activation of beta-cell-reactive T cells,and failure of immune tolerance. Viral infections have been proposed as causal determinants or initiating triggers for T1D but remain unproven. Understanding the relationship between viral infections and the development of T1D is essential for T1D prevention. Importantly, virus-induced innate immune responses, particularly type I interferon (IFN-I, IFN-a/b), have been implicated in the initiation of islet autoimmunity and development of T1D. The goal of my thesis project is to investigate how the IFN-I signaling pathway affects the development of T1D using the LEW.1WR1 rat model of autoimmune diabetes. My hypothesis is that disrupting IFN-Isignaling via functional deficiency of the IFN-I interferon receptor (IFNAR) prevents or delays the development of virus-induced diabetes.For this purpose, I generated IFNAR subunit 1(IFNAR1)-deficient LEW.1WR1 rats using CRISPR-Cas9 genome editing and confirmed the functional disruption of IFNAR1. The absence of IFNAR1 results in a significant delay in onset and frequency of diabetes following poly I:C challenge and reduces the incidence of insulitis after poly I:C treatment. The frequency of diabetes induced by Kilham rat virus (KRV) is also reduced in IFNAR1-deficient LEW.1WR1 rats. Furthermore, I observe a decrease in CD8+T cells in spleens from KRV-infected IFNAR1-deficient rats relative to that in KRV-infected wild-type rats. While splenic regulatory T cells are depleted in WT rats during KRV-infection, no such decrease is observed in KRV-infected IFNAR1-deficient rats. A comprehensive bulk RNA-seq analysis reveals a decrease of interferon-stimulated genes and inflammatory gene expression in IFNAR1-deficient rats relative to wild-type rats following KRV challenge. Collectively, the results from these studies provided mechanistic insights into the essential role of virus-induced, IFN-I-initiated innate immune responses in the early phase of autoimmune diabetes pathogenesis.



Rights and Permissions

Copyright is held by the author, with all rights reserved.