Publication Date


Document Type

Doctoral Dissertation

Academic Program

Interdisciplinary Graduate Program


Division of Cardiovascular Medicine

First Thesis Advisor

John F. Keaney, Jr.


Brown adipose tissue, thermogenic gene program, mitochondria, mitochondrial retrograde signaling, PPARgamma, calcium


In murine and human brown adipose tissue (BAT), mitochondria are powerful generators of heat. Emerging evidence has suggested that the actions of mitochondria extend beyond this conventional biochemical role. In mouse BAT and cultured brown adipocytes, impaired mitochondrial respiratory capacity is accompanied by attenuated expression of Ucp1, a key thermogenic gene, implying a mitochondrial retrograde signaling. However, few have investigated this association in the context of mitochondria-nucleus communication.

Using mice with adipose-specific ablation of LRPPRC, a regulator of respiratory capacity, we show that respiration-dependent retrograde signaling from mitochondria to nucleus contributes to transcriptional and metabolic reprogramming of BAT. Impaired respiratory capacity triggers down-regulation of thermogenic and oxidative genes, promoting a storage phenotype in BAT. This retrograde regulation functions by interfering with promoter-specific recruitment of PPARg. In addition, cytosolic calcium may mediate the retrograde signal from mitochondria to nucleus. These data are consistent with a model whereby BAT connects its respiratory capacity to thermogenic gene expression, which in turn contributes to determining its metabolic commitment.

Additionally, we find that augmented respiratory capacity activates the thermogenic gene program in inguinal (subcutaneous) white adipose tissue (IWAT) from adipose-specific LRPPRC transgenic mice. When fed a high-fat diet at thermoneutrality, these mice exhibit metabolic improvements as shown by reduced fat mass and improved insulin sensitivity. Furthermore, there is increased recruitment of brown-like adipocytes in IWAT and thus energy expenditure is significantly increased, providing a potential explanation for protection from obesity. These data suggest that augmented respiratory capacity promotes ‘browning’ of IWAT, which has beneficial effects on obesity and diabetes.



Rights and Permissions

Copyright is held by the author, with all rights reserved.