GSBS Dissertations and Theses

Publication Date


Document Type

Doctoral Dissertation

Academic Program

Interdisciplinary Graduate Program


Program in Molecular Medicine

First Thesis Advisor

Roger J. Davis, PhD


Mitogen-Activated Protein Kinase Kinases, Fusion Proteins, bcr-abl, Genes, abl, Cell Transformation, Neoplastic, Leukemia


The c-Jun NH2-terminal kinase (JNK) group of kinases include ten members that are created by alternative splicing of transcripts derived from Jnk1, Jnk2 and Jnk3 genes. The JNK1 and JNK2 protein kinases are ubiquitously expressed while JNK3 is expressed in a limited number of tissues. The JNK signaling pathway is implicated in multiple physiological processes including cell transformation. There is growing evidence that JNK signaling is involved in oncogenesis. Nevertheless, the role that JNK plays in malignant transformation is still unclear. The aim of this thesis is to examine the role of JNK in malignant transformation. For this purpose, I used the Bcr/Abl oncogene as a transforming agent. Bcr/Abl is a leukemogenic oncogene that is created by reciprocal translocation between chromosome 9 and 22. The translocation breakpoint is variable and several different Bcr/Abl isoforms have been identified such as Bcr/AblP185 and Bcr/AblP210, whose expression is associated with different types of leukemia. Bcr/Abl activates the JNK signaling pathway in hematopoietic cells and increases AP-1 transcription activity. Furthermore, dominant negative approaches demonstrate that inhibition of c-Jun or JNK prevents Bcr/ Abl-induced cell transformation in vitro. These data implicate the JNK signaling pathway in Bcr/Abl transformation although the role that JNK might have in this process is unclear. Thus, I examined the importance of JNK signaling in Bcr/Abl-induced lymphoid or myeloid transformation. For this purpose I compared Bcr/AblP185- and Bcr/AblP210- induced transformation of wild-type and JNK1-deficient cells using three approaches: in vitro, in vivo and ex vivo. The results obtained with the in vitro approach suggest that both Bcr/AblP185 and Bcr/AblP210 require JNK activity to induce lymphoid transformation. While JNK1-deficiency inhibits Bcr/AblP210 oncogenic potential in lymphoid cells both in vitro and in vivo, pharmacological inhibition of JNK activity (JNK1 and/or JNK2) blocked Bcr/AblP185 induced malignant proliferation in vitro. The differential requirement for JNK observed in the two Bcr/Abl isoforms can be ascribed to the presence in Bcr/AblP210 of the Dbl domain which can activate the JNK pathway in vitro. In the case of Bcr/AblP210, JNK1 is critical for the survival of the ex vivo derived transformed lymphoblasts upon growth factor removal. This result correlates with the fact that mice reconstituted with Bcr/AblP210 transformed Jnk1-l- bone marrow showed normal malignant lymphoid expansion in the bone marrow yet they had reduced numbers of lymphoblast in the bloodstream and lacked peripheral organ infiltration. Thus JNK1 is essential for the survival of the transformed lymphoblast outside the bone marrow microenvironment in Bcr/AblP210induced lymphoid leukemia. Interestingly, while JNK1 is essential for lymphoid transformation, it is dispensable for the proliferation of transformed myeloblasts.

Taken together these results indicate that the JNK signaling pathway plays an essential role in the survival of Bcr/AblP210 lymphoblasts and that JNK-deficiency decreases the leukomogenic potential of Bcr/AblP210 in vivo. Thus, cell survival mediated by JNK may contribute to the pathogenesis of proliferative diseases.


Some images scanned dark. Please see print version for images.



Rights and Permissions

Copyright is held by the author, with all rights reserved.