GSBS Dissertations and Theses

Publication Date


Document Type

Doctoral Dissertation

Academic Program

Immunology and Microbiology



First Thesis Advisor

Leslie J. Berg, PhD


Interferon Regulatory Factors, CD8-Positive T-Lymphocytes, Cell Differentiation, Lymphocytic choriomeningitis virus, T Cell Transcription Factor 1


Dissertations, UMMS; Interferon Regulatory Factors; CD8-Positive T-Lymphocytes; Cell Differentiation; Lymphocytic choriomeningitis virus; T Cell Transcription Factor 1


CD8+ T cell differentiation is a complex process that requires integration of signals from the TCR, co-stimulatory molecules and cytokines. Ligation of the peptide-MHC complex with the cognate TCR initiates a downstream signaling cascade of which the IL-2 inducible T-cell kinase (ITK) is a key component. Loss of ITK results in a measured reduction in T cell activation. Consequently, Itk deficient mice have defects in thymic selection, CD8+ T cell expansion and differentiation in response to virus infections, and generate a unique population of innate-like CD8+ T cells. The mechanisms that translate TCR and ITK-derived signals into distinct gene transcription programs that regulate CD8+ T cell differentiation are not defined. Our microarray screen identified IRF4 as a potential transcription factor mediating the differentiation of innate-like T cells, and antiviral CD8+ T cell in response to acute and chronic LCMV infections.

Innate-like CD8+ T cells are characterized by their high expression of CD44, CD122, CXCR3, and the transcription factor Eomesodermin (Eomes). One component of this altered development is a non-CD8+ T cell-intrinsic role for IL-4. We show that IRF4 expression is induced upon TCR signaling and is dependent on ITK activity. In contrast to WT cells, activation of IRF4-deficient CD8+ T cells leads to rapid and robust expression of Eomes, which is further enhanced by IL-4 stimulation. These data indicate that ITK signaling promotes IRF4 up-regulation following CD8+ T cell activation and that this signaling xii pathway normally suppresses Eomes expression, thereby regulating the differentiation pathway of CD8+ T cells.

ITK deficient mice also have reduced expansion of CD8+ T cells in response to acute LCMV infections. We show that IRF4 is transiently upregulated to differing levels in murine CD8+ T cells, based on the strength of TCR signaling. In turn, IRF4 controls the magnitude of the CD8+ T cell response to acute virus infection in a dose-dependent manner. Furthermore, the expression of key transcription factors such as T cell factor 1 and Eomesodermin are highly sensitive to graded levels of IRF4. In contrast, T-bet expression is less dependent on IRF4 levels and is influenced by the nature of the infection. These data indicate that IRF4 is a key component that translates the strength of TCR signaling into a graded response of virus-specific CD8+ T cells.

The data from these studies indicated a pivotal role of IRF4 in regulating the expression of T-bet and Eomes. During persistent LCMV infections, CD8+ T cells differentiate into T-bethi and Eomeshi subsets, both of which are required for efficient viral control. We show that TCR signal strength regulates the relative expression of T-bet and Eomes in antigen-specific CD8+ T cells by modulating levels of IRF4. Reduced IRF4 expression results in skewing of this ratio in favor of Eomes, leading to lower proportions and numbers of T-bet+ Eomes- precursors and poor control of LCMV Clone 13 infection. Altering this ratio in favor of T-bet xiii restores the differentiation of T-bet+ Eomes- precursors and the protective balance of T-bet to Eomes required for efficient viral control. These data highlight a critical role for IRF4 in regulating protective anti-viral CD8+ T cell responses by ensuring a balanced ratio of T-bet to Eomes, leading to the ultimate control of this chronic viral infection.



Rights and Permissions

Copyright is held by the author, with all rights reserved.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.