GSBS Dissertations and Theses

Publication Date


Document Type

Doctoral Dissertation

Academic Program

Interdisciplinary Graduate Program


Program in Molecular Medicine

First Thesis Advisor

Maria Zapp, PhD


Cell Nucleolus, Virus Replication, Nuclear Proteins, HIV-1


Dissertations, UMMS; Cell Nucleolus; Virus Replication; Nuclear Proteins; HIV-1


The nucleolus is a plurifunctional organelle with dynamic protein exchange involved in diverse aspects of cell biology. Additionally, the nucleolus has been shown to have a role in the replication of numerous viruses, which includes HIV-1. Several groups have reported HIV-1 vRNA localization within the nucleolus. Moreover, it has been demonstrated the HIV-1 Rev protein localizes to the nucleolus and interacts with nucleolar proteins, including NPM1. Despite evidence for a nucleolar involvement during replication, a functional link has not been demonstrated. I investigated whether introncontaining vRNAs have a Rev-mediated nucleolar localization step prior to export. Furthermore, I examined whether NPM1 mediates Rev nucleolar localization, participates in Rev function, and/or post-transcriptional events during viral replication. I used coupled RNA fluorescence in situhybridization and indirect immunofluorescence to visualize intron-containing vRNA relative to the nucleolus in the absence or presence of Rev expression. An RNAi-based approach was used to examine the role of NPM1 in Rev function and viral replication in cell lines and primary human macrophages. My research findings support a model for a Rev-independent nucleolar localization step of introncontaining vRNA prior to export. Intriguingly, my results also suggest NPM1 does not participate in Rev nucleolar localization or Rev-mediated vRNA export, as previously proposed. Rather, my findings support a novel role for NPM1, the cytoplasmic localization and utilization of a select class of Rev-dependent vRNAs. Collectively, my findings provide novel insight for a functional role of the nucleolus and NPM1 in HIV-1 replication, which enhances our current understanding of HIV-1 biology.



Rights and Permissions

Copyright is held by the author, with all rights reserved.