Publication Date


Document Type

Doctoral Dissertation

Academic Program

Molecular Genetics and Microbiology


Molecular Genetics and Microbiology

First Thesis Advisor

John M. Leong, MD, PhD


Attachment Sites, Microbiological, Lyme Disease, Borrelia burgdorferi, Borrelia Infections, Relapsing Fever


Host cell attachment by pathogenic bacteria can play very different roles in the course of infection. The pathogenic spirochetes Borrelia hermsii and Borrelia burgdorferi sensu lato which cause relapsing fever and Lyme disease, respectively, are transmitted by the bite of infected ticks. After transmission, these spirochetes can cause systemic infection. Relapsing fever spirochetes remain largely in the bloodstream causing febrile episodes, while Lyme disease will often colonize a variety of tissues, such as the heart, joint and nervous system, resulting in a chronic multisystemic disorder. Borrelia species have the ability to bind to various cell types, a process which plays a crucial role in pathogenesis and may influence spirochetal clearance from the bloodstream. Colonization of multiple tissues and cell types is likely promoted by the ability to bind to components found in target tissues, and many B. burgdorferi adhesins have been shown to promote attachment to a wide variety of cells and extracellular matrix components. Different Lyme disease strains have been shown to preferentially colonize certain tissues, although the basis of this tissue tropism is not well understood. In this study we found that among different Lyme disease strains, allelic variation of the adhesin DbpA contributes to variation in its in vitro binding activities raising the possibility that this variation contributes to tissue tropism in vivo. In studying B. hermsii infection, we found evidence by both histological and fluorescence in situ hybridization (FISH) analysis of tissues that indicated that red blood cells were removed by tissue resident macrophages in infected mice. Spirochetes in the spleen and liver were often visualized associated with RBCs, lending support to the hypothesis that direct interaction of B. hermsii spirochetes with RBCs leads to clearance of bacteria from the bloodstream. Our findings indicate that host cell attachment play a key role in the establishment of Lyme disease infection, and in contrast contributes to the clearance of relapsing fever infection.



Rights and Permissions

Copyright is held by the author, with all rights reserved.