Publication Date


Document Type

Doctoral Dissertation

Academic Program

Interdisciplinary Graduate Program


RNA Therapeutics Institute

First Thesis Advisor

Craig C. Mello


RNA Interference, Caenorhabditis elegans Proteins


Members of the Argonaute family of proteins, which interact with small RNAs, are the key players of RNAi and other related pathways. The C. elegans genome encodes 27 members of the Argonaute family. During this thesis research, we sought to understand the functions of the members of this gene family in C. elegans. Among the Argonaute family members, rde-1 and alg-1/2have previously been shown to be essential for RNAi and development, respectively. In this work, we wanted to assign functions to the remaining members of this large family of proteins.

Here, we describe the phenotype of 31 deletion alleles representing all of the previously uncharacterized Argonaute members. In addition to rde-1, our analysis revealed that two other Argonaute members csr-1 and prg-1 are also essential for development. csr-1 is partially required for RNAi, and essential for proper chromosome segregation. prg-1, a member of PIWI subfamily of Argonaute genes, exhibits reduced brood size and temperature-sensitive sterile phenotype, implicating that it is required for germline maintenance.

Additionally, we showed that RDE-1 interacts with trigger-derived sense and antisense siRNAs (primary siRNAs) to initiate RNAi, while several other Argonaute proteins, SAGO-1, SAGO-2, and perhaps others, functioning redundantly, interact with amplified siRNAs (secondary siRNAs) to mediate downstream silencing. Moreover, our analysis uncovered that another member of Argonaute gene family, ergo-1, is essential for the endogenous RNAi pathway.

Furthermore, we built an eight-fold Argonaute mutant, MAGO8, and analyzed its developmental phenotype and sensitivity to RNAi. Our analysis revealed that the genes deleted in the MAGO8 mutant function redundantly with each other, and are required for RNAi and the maintenance of the stem cell totipotency.



Rights and Permissions

Copyright is held by the author, with all rights reserved.