Organ-Dependent and Epitope-Dependent Repertoire Usage and Apoptosis of Antigen-Specific T Cells in Viral Infections: a Dissertation

Publication Date

April 2004

Document Type

Doctoral Dissertation


Graduate School of Biomedical Sciences, Program in Immunology and Virology


CD8-Positive T-Lymphocytes; Apoptosis; Lymphocytic choriomeningitis virus; Lymphoid Tissue; Academic Dissertations


During virus infections, activation of CD8 T cells takes place in secondary lymphoid organs including spleen and lymph nodes. The kinetics of the T cell response in lymphoid tissues has been clearly studied. However, a large number of virus-specific T cells disseminate into various nonlymphoid tissues. As reservoirs for effector and memory cells, nonlymphoid organs play an important role for defending against infections. T cell responses in nonlymphoid organs may differ from lymphoid organs.

T cell repertoire usage in lymphoid and nonlymphoid tissues was studied in an acute lymphocytic choriomeningitis virus (LCMV)-infected murine model. The hierarchy of CD8 T cell specificities was examined with cytotoxic T lymphocyte (CTL) sodium 51 chromate (51Cr) release assays and intracellular interferon (IFN)γ assays. T cell receptor (TCR) repertoire usage was determined by complementarity determining region (CDR)3 length spectratyping analysis. Both T cell specificity and TCR repertoire usage revealed some similarities and differences between several organs. Within an epitope-specific CD8 T cell population, the TCR repertoire usage was similar in different organs of the same mouse, but highly heterogeneous between individual mice with genetically identical backgrounds.

A very restricted CD4 TCR repertoire was observed in BALB/c mice after secondary respiratory syncytial virus (RSV) infection. Most of the CD4 T cells of BALB/c mice pre-immunized with RSV glycoprotein (GP) predominantly express Vβ14 TCR with discrete oligoclonal CDR3 regions. Depletion of Vβ14 CD4 T cells dramatically reduced immunopathology.

The apoptotic phenotype of LCMV-specific CD8 T cells was studied in various lymphoid and nonlymphoid tissues during acute and memory stages of infections. Peripheral tissues (peritoneal cavity (PEC), fat pad, and lung) reacted with a much lower frequency with the early apoptotic marker Annexin V than those in spleen and lymph nodes. This was not due to a TCR-based selection because similar TCR spectratypes were seen in different organs. Activated lymphoid and nonlymphoid T cells from LCMV GP33 transgenic mice, which have identical TCR α and β chains on all T cells, had differential Annexin V binding. When incubated shortly in vitro, most Annexin V+ T cells rapidly fragmented their DNA and became terminal transferase-mediated dUTP nick end-labeling positive (TUNEL+), while much fewer Annexin V- cells became TUNEL+. Therefore, those Annexin-V+ cells were truly in a pre-apoptotic stage. The differential spontaneous apoptosis in different tissues is independent of several death/survival-related molecules, including Fas/Fas ligand (FasL), turner necrosis factor (TNF)α, interleukin (IL-15), perforin, B cell lymphoma (Bcl)-2 and independent of virus tropism.

I further investigated the significance of the high Annexin V reactivity of lymphoid T cells. Pre-apoptotic cells were prevented from fragmenting their DNA by anti-CD3 or IL-2 stimulation in vitro. However, this pre-apoptotic phenotype precluded generation of memory. Annexin V reactive cells did not give rise to long-lived memory after being transferred into naïve hosts. The pre-apoptotic phenotype is also an intrinsic property of the epitope. Different proportions of apoptotic cells were found in LCMV effector and, memory T cells specific to two different epitopes, nucleoprotein (NP)396 and GP33. Higher Annexin V reactivity of NP396-specific CD8 T cells was independent of virus tropism and duration of encounter with antigen. Higher expression of IL-7R was found in peripheral, Annexin V- and GP33-specific CD8 T cells, indicating that IL-7-dependent signals may inhibit apoptosis.

Nonlymphoid T cells were more resistant than lymphoid T cells to activation-induced cell death (AICD). When stimulated with anti-CD3 in vitro for 40 hours (hr), a significantly reduced number of splenic transgenic T cells were recovered with much higher frequency of Annexin V reactivity and TUNEL staining than transgenic T cells from PEC. Consistent with the finding that Fas and FasL regulates AICD, a much lower expression of Fas and FasL was observed in PEC and lung transgenic T cells than spleen and lymph nodes after short time stimulation. FasL blockage largely increased cell-number recovery and reduced Annexin V and TUNEL staining of spleen transgenic T cells.

Interestingly, the leukocyte environment played an important role of deciding the fate of transgenic T cells. When placing activated spleen transgenic T cells with excess infected PEC cells, spleen transgenic cells rapidly reduced their Annexin V staining and TUNEL staining and were recovered with greater number after stimulation. Vice versa, PEC transgenic T cells became Annexin V and TUNEL positive with lower numbers of cells recovered when placed with excess splenocytes. Less detection of Annexin V+ cells in peripheral tissues was not due to rapid phagocytosis by macrophages, because Cytochalasin D, which can inhibit phagocytosis, did not induce equal amount of pre-apoptotic cells in spleen and PEC. This reduced death in the periphery may contribute to the long-term maintenance of nondividing nonlymphoid memory T cells, enabling them to efficiently function without being driven into apoptosis.

Overall, this study characterizes in detail the different T cell repertoire usage and apoptosis of virus-specific T cells based on their organ localization and specificities and helps to better understand T cell immunity after infections and vaccine design.


In the process of seeking author's permission to provide full text.

Rights and Permissions

Copyright is held by the author, with all rights reserved.

This document is currently not available here.