Publication Date


Document Type

Doctoral Dissertation

Academic Program

Immunology and Microbiology


Microbiology and Physiological Systems

First Thesis Advisor

Dr. Janet Stavnezer


Immunoglobulin A, Immunoglobulin Switch Region, Lymphoma, B-Cell, ADP Ribose Transferases


Heavy chain isotype switch recombination is preceded by the appearance of RNA initiating 5' of the specific switch region which will undergo recombination. In an effort to understand the potential function of germline transcripts in switch recombination and the degree to which the regulation of germline transcripts correlates with the regulation of switching, we studied this process in the murine B-lymphoma cell line I.29μ, which in the presence of bacterial lipopolysaccharide (LPS) switches primarily to IgA and less frequently to IgE. Levels of α-germline transcripts initiating upstream of α switch (Sα) sequences are elevated in clones of this line which switch well as compared to clones which switch less frequently. TGFβ1 has been shown to increase α-germline transcripts and switching to IgA expression in LPS-stimulated murine splenic B-cells. We now demonstrate in I.29μ cells that TGFβ also increases switching to IgA and increases the level of α-germline transcripts 5 to 9 fold. Nuclear run-on analysis shows that this increase is at the level of transcription. Thus, TGFβ appears to direct switching to IgA by inducing transcription from the unrearranged Sα- CαDNA segment. Germline α RNA is quite stable in I.29μ cells, having a half life of about 3 to 5 hours, and we find only slight stabilization in the presence of TGFβ. Levels of ε-germline transcripts are not increased by TGFβ . IL-4, which modestly increases switching to IgA in I.29μ cells, slightly increases trancription of α-germline RNA. However, we present evidence suggesting that endogenously produced IL-4 may also act at additional levels to increase switching to IgA. IFNγ, which reduces IgA expression in these cells, also reduces the level of α-germline transcripts. IFNγ also reduces the level of ε-germline transcripts induced by IL-4. Our results support the hypothesis that the regulation of transcription of particular switch sequences by cytokines in turn regulates the specificity of recombination.

In studies aimed at identifying other signalling pathways that promote class switching, we discovered that inhibitors of the nuclear enzyme poly(ADP-ribose) polymerase (PARP) increase lipopolysaccharide (LPS)-induced switching to IgA in the B cell lymphoma I.29μ and to IgG1 in LPS + IL-4-treated splenic B cells. PARP, which binds to and is activated by DNA strand breaks, catalyzes the removal of ADP-ribose from NAD+ and poly(ADP-ribosylation) of chromatin-associated acceptor proteins. This enzyme is believed to function in cellular processes involving DNA strand breaks as well as in modulating chromatin structure. In I.29μ cells, PARP inhibitors increase IgA switching by day 2 and cause a 5-fold average increase in switching on day 3 as assayed by immunofluorescence microscopy. The PARP inhibitor, nicotinamide, also causes a reduced intensity of hybridization of Cμ and Cα specific probes to genomic DNA fragments containing the expressed VDJ-Cμ and the unrearranged Sα - Cα segments, respectively, indicating that PARP inhibition increases rearrangment of these fragments. Induction of switching by PARP inhibitors is not mimicked by treatment with cAMP analogs or reduced by inhibitors of protein kinase A (PKA). Induction of switching by PARP inhibitors does not appear to involve increased levels of transcription of the unrearranged Cα gene, although TGFβ is required for optimal induction by PARP inhibitors, consistent with a requirement for transcription of the unrearranged CH gene. PARP inhibitors do not overcome the requirement for endogenously produced IL-4.


Some images did not scan well. Please consult original document.



Rights and Permissions

Copyright is held by the author, with all rights reserved.