Publication Date


Document Type

Doctoral Dissertation

Academic Program

Cell Biology


Microbiology and Physiological Systems

First Thesis Advisor

H. Maurice Goodman


Pituitary Gland, Anterior, Luteinizing Hormone, Substance P


The observations that substance P (SP) is localized in the anterior pituitary gland (AP) and is regulated by the hormonal status of the animal, as well as the demonstration of SP binding sites in the AP, have led to the idea that SP may participate in the regulation of AP function. Numerous and sometimes contradictory reports of SP effects on AP hormone secretion, particularly on luteinizing hormone (LH), left the question of whether SP acts directly at the level of the AP to regulate LH secretion still unanswered. To investigate a possible physiological function of SP in the AP, the effects of exogenous SP on LH secretion from AP cells from adult and prepubertal male and female rats in short term culture were studied. It was found that SP (100nM-1μM) significantly stimulates LH release in cultured AP cells and that this effect varies as a function of age and sex. SP has no significant effect on LH release from AP cells of male and female prepubertal rats. After day 30 a sharp increase in the response to SP occurs in both sexes. This level of responsiveness continues through adulthood in AP cells from the female rat. In contrast, AP cells from male rats failed to respond during adulthood (over 50 days of age) but were highly responsive during the peripubertal period (30-35 days). The possibility that the responsiveness to SP is influenced by the endocrine status of the animal was investigated by exposing AP cells from responding animals to androgens in vivo and in vitro. It was found that AP cells from female rats treated with androgen were less responsive to 100nM SP but did respond at higher doses of SP. SP effects on AP function were further analyzed in experiments using radioligand binding assays to assess possible changes in SP receptor number or affinity as related to age and sex. In AP membranes from female rats, maximum binding is 8-fold higher (Bmax=4.2 pmo1/mg membrane protein) than in AP membranes from male rats (Bmax=560fmo1/ mg membrane protein). These studies suggest a role for SP as a secondary regulator of LH secretion with possible physiological significance for reproductive function.



Rights and Permissions

Copyright is held by the author, with all rights reserved.