Publication Date


Document Type

Doctoral Dissertation

Academic Program

Immunology and Microbiology



First Thesis Advisor

Susan L. Swain


Influenza, CD4 T cell, CD4 effector, CD4 memory, T cell memory, transition to memory, IL-2, trans presentation, survival, vaccine, protection.


The contributions of peptide antigen affinity for TCR in driving T cell memory is unclear. Effector CD4 T cells must recognize cognate antigen again at an effector checkpoint, 5-8 days post-infection, to generate an optimal memory population. In this thesis, we examined whether peptide affinity for the TCR of effectors impacts the extent of memory and degree of protection against rechallenge. We used an influenza A virus (IAV) nucleoprotein (NP)-specific TCR transgenic strain, FluNP, and generated NP- peptide variants that bind FluNP TCR with a broad range of avidity. Varying peptide avidity in vivo at the effector checkpoint revealed that higher affinity interactions yielded greater numbers of FluNP memory cells in the spleen and most dramatically in the lung and dLN. The major impact of avidity was on memory cell number, not cytokine production, and was already apparent within several days of transfer. These memory cells demonstrated enhanced protection against lethal IAV infection with a robust early day 5 secondary effector response in the lung. We previously showed that autocrine IL-2 production during the effector checkpoint prevented default effector apoptosis and supported memory formation. Here, peptide avidity determined the level of IL-2 produced by effectors while IL-2R expression was unaffected. However, IL-2Ra expression by APC drove more memory cell formation, suggesting that transpresentation of IL-2 by APC at this checkpoint enhanced CD4 memory generation. Secondary memory generation was also avidity-dependent. We propose this pathway selects CD4 effectors of highest affinity to progress to memory and can instruct future vaccine design.



Rights and Permissions

Licensed under a Creative Commons license

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Available for download on Monday, July 10, 2023