ORCID ID

0000-0001-6613-7024

Publication Date

2021-10-30

Document Type

Doctoral Dissertation

Academic Program

Interdisciplinary Graduate Program

Department

Department of Molecular, Cell and Cancer Biology

First Thesis Advisor

Thomas Fazzio

Keywords

R-loop, RNA, ribosomal RNA, embryonic stem cells, chromatin, epigenetics, DEAD-box proteins, CEBPZ, CTCF

Abstract

RNAs associate with chromatin through various ways and carry out diverse functions. One mechanism by which RNAs interact with chromatin is by the complementarity of RNA with DNA, forming a three-stranded nucleic acid structure named R-loop. R-loops have been shown to regulate transcription initiation, RNA modification, and immunoglobulin class switching. However, R-loops accumulated in the genome can be a major source of genome instability, meaning that they must be tightly regulated. This thesis aims to identify R-loop-binding proteins systemically and study their regulation of R-loops.

Using immunoprecipitation of R-loops followed by mass spectrometry, with or without crosslinking, a total of 364 proteins were identified. Among them RNA-interacting proteins were prevalent, including some already known R-loop regulators. I found that a large fraction of the R-loop interactome consists of proteins localized to the nucleolus. By examining several DEAD-box helicases, I showed that they regulate rRNA processing and a shared set of mRNAs. Investigation of an R-loop-interacting protein named CEBPZ revealed its nucleolar localization, its depletion caused down-regulation of R-loops associated with rRNA and mRNA. Characterization of the genomic distribution of CEBPZ revealed its colocalization with insulator-regulator CTCF. When studying if CEBPZ recruits CTCF, I found that instead of regulating CTCF binding, CEBPZ depletion has a major effect on the performance of CUT&RUN, a technique for identifying DNA binding sites of proteins. How CEBPZ affects CUT&RUN is still under investigation, the study of which may help us understand the roles of CEBPZ in regulation of global chromatin structure and genome integrity.

DOI

10.13028/aysv-5285

Rights and Permissions

Copyright is held by the author, with all rights reserved.

Available for download on Saturday, November 18, 2023

Share

COinS