ORCID ID
0000-0001-7502-3141
Publication Date
2021-08-03
Document Type
Doctoral Dissertation
Academic Program
Interdisciplinary Graduate Program
Department
RNA Therapeutics Institute
First Thesis Advisor
Craig Mello
Keywords
C. elegans, CRISPR, Genome editing, HDR, Donor DNA, Precision genome editing, Chemical Modifications, Modified donors, 5′ modifications, TEG modifications, melted donors.
Abstract
CRISPR/Cas9 induced DNA breaks can be precisely repaired by cellular homology-directed repair (HDR) pathways using exogenously provided template DNA (donor). However, the full potential of precision editing is hindered in many model systems by low cutting efficiencies, low HDR efficiencies and, cytotoxicity related to Cas9 and donor DNA. In this thesis, I address these challenges and present methods that we developed to increase HDR efficiencies in multiple model organisms.
In Caenorhabditis elegans, we show that by reducing toxicity high editing efficiencies can be achieved with single stranded oligonucleotide (ssODN) donors. We demonstrate that melting dsDNA donors dramatically improves the knock-in efficiencies of longer (1kb) edits. In addition, we describe 5′-terminal modifications to the donor molecules that further increase the frequency of precision editing. With our methodology a single optimally injected animal can yield more than 100 Green Fluorescent Protein (GFP) positive progeny, dramatically enhancing efficiency of genome editing.
Next, we demonstrate the generality of 5′ modified donors by extending our studies to human cell cultures and mice zygotes. In mammalian models, 2′OMe-RNA modifications consistently increase HDR efficiencies by several fold over unmodified donors. Furthermore, end-modified donors exhibited a striking reduction in end-joining reactions including reduced concatemer formation and reduced direct ligation into the host genome. Our study demonstrates that HDR can be improved without inhibiting competing end-joining pathways and provides a platform to identify new chemical modifications that could further increase the potency and efficacy of precision genome editing.
Repository Citation
Ghanta KS. (2021). An Exploration of the Properties of Repair Template DNA that Promote Precision Genome Editing. Morningside Graduate School of Biomedical Sciences Dissertations and Theses. https://doi.org/10.13028/hs7v-w341. Retrieved from https://escholarship.umassmed.edu/gsbs_diss/1150
DOI
10.13028/hs7v-w341
Rights and Permissions
Licensed under a Creative Commons license
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Included in
Biotechnology Commons, Genetics Commons, Molecular Biology Commons, Molecular Genetics Commons