University of Massachusetts Medical School Faculty Publications
UMMS Affiliation
Department of Neurobiology; Lois Lab
Publication Date
2013-05-01
Document Type
Article
Subjects
Basic Helix-Loop-Helix Transcription Factors; Dentate Gyrus; Excitatory Postsynaptic Potentials; Neurons; Synapses
Disciplines
Developmental Neuroscience | Molecular and Cellular Neuroscience
Abstract
Electrical activity regulates the manner in which neurons mature and form connections to each other. However, it remains unclear whether increased single-cell activity is sufficient to alter the development of synaptic connectivity of that neuron or whether a global increase in circuit activity is necessary.
To address this question, we genetically increased neuronal excitability of in vivo individual adult-born neurons in the mouse dentate gyrus via expression of a voltage-gated bacterial sodium channel. We observed that increasing the excitability of new neurons in an otherwise unperturbed circuit leads to changes in both their input and axonal synapses.
Furthermore, the activity-dependent transcription factor Npas4 is necessary for the changes in the input synapses of these neurons, but it is not involved in changes to their axonal synapses. Our results reveal that an increase in cell-intrinsic activity during maturation is sufficient to alter the synaptic connectivity of a neuron with the hippocampal circuit and that Npas4 is required for activity-dependent changes in input synapses.
Rights and Permissions
Copyright 2013 the authors. Publisher PDF posted as allowed by the publisher's author rights policy at http://www.jneurosci.org/site/misc/ifa_policies.xhtml#copyright.
DOI of Published Version
10.1523/JNEUROSCI.1571-12.2013
Source
J Neurosci. 2013 May 1;33(18):7928-40. doi: 10.1523/JNEUROSCI.1571-12.2013. Link to article on publisher's site.
Related Resources
Journal/Book/Conference Title
The Journal of neuroscience : the official journal of the Society for Neuroscience
PubMed ID
23637184
Repository Citation
Sim S, Antolin S, Lin C, Lin Y, Lois C. (2013). Increased cell-intrinsic excitability induces synaptic changes in new neurons in the adult dentate gyrus that require npas4. University of Massachusetts Medical School Faculty Publications. https://doi.org/10.1523/JNEUROSCI.1571-12.2013. Retrieved from https://escholarship.umassmed.edu/faculty_pubs/53