UMass Chan Medical School Faculty Publications

UMMS Affiliation

Department of Biochemistry and Molecular Pharmacology

Publication Date


Document Type

Article Preprint


Molecular Biology


The exocyst is a large multisubunit tethering complex essential for targeting and fusion of secretory vesicles in eukaryotic cells. Although the assembled exocyst complex is proposed to tether vesicles to the plasma membrane and activate the SNARE proteins for membrane fusion, only little is known about the key biochemical steps that exocyst stimulates in the course of SNARE complex assembly, a critical question defining the essential molecular role of the exocyst complex. Here, we use a combination of single molecule and bulk fluorescence assays with purified octameric yeast exocyst complexes to examine the role of exocyst in a reconstituted SNARE assembly and fusion system. We show that the exocyst complex simulates multiple steps spanning from SNARE protein activation to ternary complex assembly, rather than affecting only a specific subset of steps. We also observed that the exocyst has important downstream roles in driving membrane fusion, up to full content mixing of vesicle lumens. Our results suggest that the exocyst complex provides extensive chaperoning functions for the entire process of SNARE complex assembly, presumably using its multi-faceted structure provided by the eight subunits.


Molecular Biology, exocyst, SNARE complex

Rights and Permissions

The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.

DOI of Published Version



bioRxiv 2022.01.16.476540; doi: Link to preprint on bioRxiv.


This article is a preprint. Preprints are preliminary reports of work that have not been certified by peer review.

Journal/Book/Conference Title


Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.