University of Massachusetts Medical School Faculty Publications

Title

Classification and prediction of post-trauma outcomes related to PTSD using circadian rhythm changes measured via wrist-worn research watch in a large longitudinal cohort

UMMS Affiliation

Department of Emergency Medicine

Publication Date

2021-01-22

Document Type

Article

Disciplines

Biomedical Devices and Instrumentation | Emergency Medicine | Mental Disorders | Musculoskeletal, Neural, and Ocular Physiology | Neuroscience and Neurobiology | Telemedicine

Abstract

Post-Traumatic Stress Disorder (PTSD) is a psychiatric condition resulting from threatening or horrifying events. We hypothesized that circadian rhythm changes, measured by a wrist-worn research watch are predictive of post-trauma outcomes.

APPROACH: 1618 post-trauma patients were enrolled after admission to emergency departments (ED). Three standardized questionnaires were administered at week eight to measure post-trauma outcomes related to PTSD, sleep disturbance, and pain interference with daily life. Pulse activity and movement data were captured from a research watch for eight weeks. Standard and novel movement and cardiovascular metrics that reflect circadian rhythms were derived using this data. These features were used to train different classifiers to predict the three outcomes derived from week-eight surveys. Clinical surveys administered at ED were also used as features in the baseline models.

RESULTS: The highest cross-validated performance of research watch-based features was achieved for classifying participants with pain interference by a logistic regression model, with an area under the receiver operating characteristic curve (AUC) of 0.70. The ED survey-based model achieved an AUC of 0.77, and the fusion of research watch and ED survey metrics improved the AUC to 0.79.

SIGNIFICANCE: This work represents the first attempt to predict and classify post-trauma symptoms from passive wearable data using machine learning approaches that leverage the circadian desynchrony in a potential PTSD population.

Keywords

Actigraphy, Circadian rhythms, mHealth, Photoplethysmography, Post-traumatic stress disorder, Wearables

DOI of Published Version

10.1109/JBHI.2021.3053909

Source

Cakmak AS, Perez Alday EA, Da Poian G, Bahrami Rad A, Metzler TJ, Neylan TC, House SL, Beaudoin FL, An X, Stevens J, Zeng D, Linnstaedt SD, Jovanovic T, Germine LT, Bollen KA, Rauch SL, Lewandowski C, Hendry PL, Sheikh S, Storrow AB, Musey PI, Haran JP, Jones CW, Punches BE, Swor RA, Gentile NT, Mcgrath ME, Seamon MJ, Mohiuddin K, Chang AM, Pearson C, Domeier RM, Bruce SE, O'Neil BJ, Rathlev NK, Sanchez LD, Pietrzak RH, Joormann J, Barch DM, Pizzagalli D, Harte SE, Elliott JM, Koenen KC, Ressler KJ, Kessler R, Li Q, Mclean SA, Clifford GD. Classification and prediction of post-trauma outcomes related to PTSD using circadian rhythm changes measured via wrist-worn research watch in a large longitudinal cohort. IEEE J Biomed Health Inform. 2021 Jan 22;PP. doi: 10.1109/JBHI.2021.3053909. Epub ahead of print. PMID: 33481725. Link to article on publisher's site

Comments

Full author list omitted for brevity. For the full list of authors, see article.

Related Resources

Link to Article in PubMed

Journal/Book/Conference Title

IEEE journal of biomedical and health informatics

PubMed ID

33481725

Share

COinS