University of Massachusetts Medical School Faculty Publications

Title

Single-Cell Electroporation across Different Organotypic Slice Culture of Mouse Hippocampal Excitatory and Class-Specific Inhibitory Neurons

UMMS Affiliation

Brudnick Neuropsychiatric Research Institute, Department of Neurobiology; Graduate School of Biomedical Sciences, Interdisciplinary Graduate Program; Graduate School of Biomedical Sciences, MD/PhD Program

Publication Date

2020-10-06

Document Type

Article

Disciplines

Investigative Techniques | Laboratory and Basic Science Research | Molecular Biology | Neuroscience and Neurobiology

Abstract

Electroporation has established itself as a critical method for transferring specific genes into cells to understand their function. Here, we describe a single-cell electroporation technique that maximizes the efficiency (~80%) of in vitro gene transfection in excitatory and class-specific inhibitory neurons in mouse organotypic hippocampal slice culture. Using large glass electrodes, tetrodotoxin-containing artificial cerebrospinal fluid and mild electrical pulses, we delivered a gene of interest into cultured hippocampal CA1 pyramidal neurons and inhibitory interneurons. Moreover, electroporation could be carried out in cultured hippocampal slices up to 21 days in vitro with no reduction in transfection efficiency, allowing for the study of varying slice culture developmental stages. With interest growing in examining the molecular functions of genes across a diverse range of cell types, our method demonstrates a reliable and straightforward approach to in vitro gene transfection in mouse brain tissue that can be performed with existing electrophysiology equipment and techniques.

DOI of Published Version

10.3791/61662

Source

Keener DG, Cheung A, Futai K. Single-Cell Electroporation across Different Organotypic Slice Culture of Mouse Hippocampal Excitatory and Class-Specific Inhibitory Neurons. J Vis Exp. 2020 Oct 6;(164). doi: 10.3791/61662. PMID: 33104060. Link to article on publisher's site

Related Resources

Link to Article in PubMed

Journal/Book/Conference Title

Journal of visualized experiments : JoVE

PubMed ID

33104060

Share

COinS