University of Massachusetts Medical School Faculty Publications

UMMS Affiliation

RNA Therapeutics Institute; Department of Biochemistry and Molecular Pharmacology; Graduate School of Biomedical Sciences

Publication Date

2019-11-19

Document Type

Article Preprint

Disciplines

Amino Acids, Peptides, and Proteins | Bioinformatics | Genetic Phenomena | Genetics and Genomics | Nucleic Acids, Nucleotides, and Nucleosides

Abstract

Background The ability to generate multiple mRNA isoforms from a single gene by alternative splicing (AS) is crucial for the regulation of eukaryotic gene expression. Because different mRNA isoforms can have widely differing decay rates, however, the flux through competing AS pathways cannot be determined by traditional RNA-Seq data alone. Further, some mRNA isoforms with extremely short half-lives, such as those subject to translation-dependent nonsense-mediated decay (AS-NMD), may be completely overlooked in even the most extensive RNA-Seq analyses.

Results RNA immunoprecipitation in tandem (RIPiT) of exon junction complex (EJC) components allows for the purification of post-splicing mRNA-protein particles (mRNPs) not yet subject to translation (pre-translational mRNPs) and translation-dependent mRNA decay. Here we compared EJC RIPiT-Seq to whole cell and cytoplasmic RNA-Seq data from HEK293 cells. Consistent with expectations, we found that the flux through known AS-NMD pathways is substantially higher than what is captured by RNA-Seq. We also identified thousands of previously unannotated splicing events; while many can be attributed to “splicing noise”, others are evolutionarily-conserved events that produce new AS-NMD isoforms likely involved in maintenance of protein homeostasis. Several of these occur in genes whose overexpression has been linked to poor cancer prognosis.

Conclusions Deep sequencing of RNAs in post-splicing, pre-translational mRNPs provides a means to identify and quantify splicing events without the confounding influence of differential mRNA decay. For many known AS-NMD targets, the NMD-linked AS pathway dominates. EJC RIPiT-Seq also enabled identification of numerous conserved but previously unknown AS-NMD events.

Keywords

Bioinformatics, mRNA, Deep sequencing, AS-NMD, Exon junctions, mRNA isoforms, AS-NMD, RIPiT-Seq, pre-translational mRNPs, splicing noise

Rights and Permissions

The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.

DOI of Published Version

10.1101/847004

Source

bioRxiv 847004; doi: https://doi.org/10.1101/847004. Link to preprint on bioRxiv service.

Journal/Book/Conference Title

bioRxiv

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.