University of Massachusetts Medical School Faculty Publications

UMMS Affiliation

Department of Microbiology and Physiological Systems; Graduate School of Biomedical Sciences

Publication Date

2019-10-03

Document Type

Article Preprint

Disciplines

Bacterial Infections and Mycoses | Hemic and Immune Systems | Immunopathology | Immunoprophylaxis and Therapy | Microbiology | Therapeutics

Abstract

In 2017, there were over 550,000 estimated new cases of multi-drug/rifampicin resistant tuberculosis (MDR/RR-TB), emphasizing a need for new treatment strategies. Linezolid (LZD) is a potent antibiotic for antibiotic-resistant Gram-positive infections and is an effective treatment for TB. However, extended LZD use can lead to LZD-associated host toxicities, most commonly bone marrow suppression. LZD toxicities may be mediated by IL-1, a pathway important for early immunity during M. tuberculosis infection that later contributes to pathology. We hypothesized LZD efficacy could be enhanced by modulation of IL-1 pathway to reduce BM toxicity and TB associated-inflammation. We used two animal models of TB to test our hypothesis, mice and cynomolgus macaques. Antagonizing IL-1 in chronically-infected mice reduced lung neutrophil numbers and partially restored the erythroid progenitor populations that are depleted by LZD. In macaques, we found no conclusive evidence of BM suppression associated with LZD, indicating our treatment time may have been short enough to avoid the toxicities observed in humans. Though treatment was only 1 month, the majority of granulomas were sterilized with reduced inflammation (assessed by PET/CT) in animals treated with both LZD and IL-1 receptor antagonist (IL-1Rn). However, overall lung inflammation was significantly reduced in macaques treated with both IL-1Rn and LZD, compared to LZD alone. Importantly, IL-1Rn administration did not noticeably impair the host response against Mtb or LZD efficacy in either animal model. Together, our data support that inhibition of IL-1 in combination with LZD has potential to be an effective HDT for TB.

Keywords

Microbiology, IL-1, tuberculosis, therapeutics, rifampicin, drug resistance

Rights and Permissions

The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license.

DOI of Published Version

10.1101/792390

Source

bioRxiv 792390; doi: https://doi.org/10.1101/792390. Link to preprint on bioRxiv service.

Comments

Full author list omitted for brevity. For the full list of authors, see article.

Journal/Book/Conference Title

bioRxiv

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.