University of Massachusetts Medical School Faculty Publications

UMMS Affiliation

Department of Biochemistry and Molecular Pharmacology; Department of Molecular, Cell and Cancer Biology; Imbalzano Lab

Publication Date

2019-06-14

Document Type

Article Preprint

Disciplines

Amino Acids, Peptides, and Proteins | Cell Biology | Cells | Cellular and Molecular Physiology | Genetic Phenomena | Musculoskeletal, Neural, and Ocular Physiology

Abstract

MTF1 is a conserved metal-binding transcription factor in eukaryotes that binds to conserved DNA sequence motifs, termed metal response elements (MREs). MTF1 responds to metal excess and deprivation, protects cells from oxidative and hypoxic stresses, and is required for embryonic development in vertebrates. We used multiple strategies to identify an unappreciated role for MTF1 and copper (Cu) in cell differentiation. Upon initiation of myogenesis from primary myoblasts, MTF1 expression increased, as did nuclear localization. Mtf1 knockdown impaired differentiation, while addition of non-toxic concentrations of Cu+ enhanced MTF1 expression and promoted myogenesis. Cu+ bound stoichiometrically to a C-terminus tetra-cysteine of MTF1. MTF1 bound to chromatin at the promoter regions of myogenic genes and binding was stimulated by copper. MTF1 formed a complex with MyoD at myogenic promoters, the master transcriptional regulator of the myogenic lineage. These studies establish novel mechanisms by which copper and MTF1 regulate gene expression in myoblast differentiation.

Keywords

MTF1, transcription factor, gene expression, myogenesis, copper

Rights and Permissions

The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.

DOI of Published Version

10.1101/534271

Source

bioRxiv 534271; doi: https://doi.org/10.1101/534271. Link to preprint on bioRxiv service.

Journal/Book/Conference Title

bioRxiv

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.