University of Massachusetts Medical School Faculty Publications

UMMS Affiliation

Department of Biochemistry and Molecular Pharmacology

Publication Date

2018-12-12

Document Type

Article Preprint

Disciplines

Cell Biology | Developmental Biology | Enzymes and Coenzymes | Inorganic Chemicals

Abstract

Trace elements such as copper (Cu), zinc (Zn), iron (Fe), and manganese (Mn) are enzyme cofactors and second messengers in cell signaling. Trace elements are emerging as key regulators of differentiation and development of mammalian tissues including blood, brain, and skeletal muscle. We previously reported an influx of Cu and dynamic expression of various metal transporters during differentiation of skeletal muscle cells. Here, we demonstrate that during differentiation of skeletal myoblasts an increase of additional trace elements such as Mn, Fe and Zn occurs. Interestingly the Mn increase is concomitant with increased Mn-dependent SOD2 levels. To better understand the Mn import pathway in skeletal muscle cells, we probed the functional relevance of the closely related proteins ZIP8 and ZIP14, which are implicated in Zn, Mn, and Fe transport. Partial depletion of ZIP8 severely impaired growth of myoblasts and led to cell death under differentiation conditions, indicating that ZIP8-mediated metal transport is essential in skeletal muscle cells. Moreover, knockdown of Zip8 impaired activity of the Mn-dependent SOD2. Growth defects were partially rescued by Mn supplementation to the medium, suggesting additional functions for ZIP8 in the skeletal muscle lineage. Knockdown of Zip14, on the other hand, had only a mild effect on myotube size, consistent with a role for ZIP14 in muscle hypertrophy. This is the first report on the functional relevance of two members of the ZIP family of metal transporters in the skeletal muscle lineage, and further supports the paradigm that trace metal transporters are critical modulators of mammalian tissue development.

Keywords

myogenesis, manganese, ZIP8, ZIP14, Superoxide dismutase 2 (SOD2), cell biology

Rights and Permissions

The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.

DOI of Published Version

10.1101/494542

Source

bioRxiv 494542; doi: https://doi.org/10.1101/49454. Link to preprint on bioRxiv service.

Journal/Book/Conference Title

bioRxiv

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.