University of Massachusetts Medical School Faculty Publications

UMMS Affiliation

Department of Biochemistry and Molecular Pharmacology

Publication Date

11-13-2017

Document Type

Article Preprint

Disciplines

Amino Acids, Peptides, and Proteins | Biochemistry | Enzymes and Coenzymes | Genetic Phenomena | Nucleic Acids, Nucleotides, and Nucleosides | Structural Biology | Viruses

Abstract

Virus capsid proteins reproducibly self-assemble into regularly-shaped, stable shells that protect the viral genome from external environmental assaults, while maintaining the high internal pressure of the tightly packaged viral genome. To elucidate how capsids maintain stability under harsh conditions, we investigated the capsid components of a hyperthermophilic virus, phage P74-26. We determined the structure of a capsid protein gp87 and show that it has the same fold as trimeric decoration proteins that enhance the structural stability of capsids in many other phage, despite lacking significant sequence homology. We also find that gp87 is significantly more stable than its mesophilic homologs, reflecting the high temperature environment in which phage P74-26 thrives. Our analysis of the gp87 structure reveals that the core domain of the decoration protein is conserved in trimeric capsid components across numerous dsDNA viruses, including human pathogens such as Herpesviruses. Moreover, this core β-barrel domain is found in the anti-CRISPR protein AcrIIC1, which suggests a mechanism for the evolution of this broad spectrum Cas9 inhibitor. Our work illustrates the principles for increased stability of a thermophilic decoration protein, and extends the evolutionary reach of the core trimeric decoration protein fold.

Keywords

biochemistry, hyperthermophilic phage decoration protein, evolution, herpesvirus

Rights and Permissions

The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.

DOI of Published Version

10.1101/216911

Source

bioRxiv 216911; doi: https://doi.org/10.1101/216911. Link to preprint on bioRxiv service.

Journal/Book/Conference Title

bioRxiv

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.