UMass Chan Medical School Faculty Publications

UMMS Affiliation

Department of Microbiology and Physiological Systems

Publication Date


Document Type

Article Preprint


Bacterial Infections and Mycoses | Immunology of Infectious Disease | Medical Immunology | Microbiology


Protection from infectious disease relies on two distinct mechanisms. 'Antimicrobial resistance' directly inhibits pathogen growth, whereas 'infection tolerance' controls tissue damage. A single immune-mediator can differentially contribute to these mechanisms in distinct contexts, confounding our understanding of protection to different pathogens. For example, the NADPH-dependent phagocyte oxidase complex (Phox) produces anti-microbial superoxides and protects from tuberculosis in humans. However, Phox-deficient mice do not display the expected defect in resistance to M. tuberculosis leaving the role of this complex unclear. We re-examined the mechanisms by which Phox contributes to protection from TB and found that mice lacking the Cybb subunit of Phox suffered from a specific defect in tolerance, which was due to unregulated Caspase1 activation, IL-1β production, and neutrophil influx into the lung. These studies demonstrate that Phox-derived superoxide protect against TB by promoting tolerance to persistent infection, and highlight a central role for Caspase1 in regulating TB disease progression.


phagocyte, oxidase, tuberculosis, NADPH, superoxides, mice, Caspase1, immunology

Rights and Permissions

The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license.

DOI of Published Version



bioRxiv 232777; doi: Link to preprint on bioRxiv service.

Journal/Book/Conference Title


Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.