University of Massachusetts Medical School Faculty Publications
UMMS Affiliation
UMass Metabolic Network; Department of Molecular, Cell, and Cancer Biology
Publication Date
2018-03-20
Document Type
Article
Disciplines
Cell Biology | Cellular and Molecular Physiology | Genetics and Genomics | Molecular Biology | Nutritional and Metabolic Diseases
Abstract
Genetic instability of the mitochondrial genome (mtDNA) plays an important role in human aging and disease. Thus far, it has proven difficult to develop successful treatment strategies for diseases that are caused by mtDNA instability. To address this issue, we developed a model of mtDNA disease in the nematode C. elegans, an animal model that can rapidly be screened for genes and biological pathways that reduce mitochondrial pathology. These worms recapitulate all the major hallmarks of mtDNA disease in humans, including increased mtDNA instability, loss of respiration, reduced neuromuscular function, and a shortened lifespan. We found that these phenotypes could be rescued by intervening in numerous biological pathways, including IGF-1/insulin signaling, mitophagy, and the mitochondrial unfolded protein response, suggesting that it may be possible to ameliorate mtDNA disease through multiple molecular mechanisms.
Keywords
IGF-1/insulin signaling, RNAi, mitochondrial DNA depletion, mitochondrial disease, mitochondrial genome, mitochondrial unfolded protein response, mitophagy, mutation, neuromuscular dysfunction, polymerase gamma
Rights and Permissions
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
DOI of Published Version
10.1016/j.celrep.2018.02.099
Source
Cell Rep. 2018 Mar 20;22(12):3115-3125. doi: 10.1016/j.celrep.2018.02.099. Link to article on publisher's site
Related Resources
Journal/Book/Conference Title
Cell reports
PubMed ID
29562168
Repository Citation
Haroon S, Li A, Weinert JL, Fritsch C, Ericson NG, Alexander-Floyd J, Braeckman BP, Haynes CM, Bielas JH, Gidalevitz T, Vermulst M. (2018). Multiple Molecular Mechanisms Rescue mtDNA Disease in C. elegans. University of Massachusetts Medical School Faculty Publications. https://doi.org/10.1016/j.celrep.2018.02.099. Retrieved from https://escholarship.umassmed.edu/faculty_pubs/1490
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Included in
Cell Biology Commons, Cellular and Molecular Physiology Commons, Genetics and Genomics Commons, Molecular Biology Commons, Nutritional and Metabolic Diseases Commons