UMass Chan Medical School Faculty Publications

UMMS Affiliation

Department of Biochemistry and Molecular Pharmacology

Publication Date


Document Type



Databases, Protein; Glycoproteins; Glycosylation; HeLa Cells; Hexosyltransferases; Humans; Membrane Proteins; Protein Processing, Post-Translational; Protein Structure, Tertiary


Bioinformatics | Cell and Developmental Biology | Cell Biology | Molecular Biology


Metazoan organisms assemble two isoforms of the oligosaccharyltransferase (OST) that have different catalytic subunits (STT3A or STT3B) and partially nonoverlapping roles in asparagine-linked glycosylation. The STT3A isoform of the OST is primarily responsible for co-translational glycosylation of the nascent polypeptide as it enters the lumen of the endoplasmic reticulum. The C-terminal 65-75 residues of a glycoprotein will not contact the translocation channel-associated STT3A isoform of the OST complex before chain termination. Biosynthetic pulse labeling of five human glycoproteins showed that extreme C-terminal glycosylation sites were modified by an STT3B-dependent posttranslocational mechanism. The boundary for STT3B-dependent glycosylation of C-terminal sites was determined to fall between 50 and 55 residues from the C terminus of a protein. C-terminal NXT sites were glycosylated more rapidly and efficiently than C-terminal NXS sites. Bioinformatics analysis of glycopeptide databases from metazoan organisms revealed a lower density of C-terminal acceptor sites in glycoproteins because of reduced positive selection of NXT sites and negative selection of NXS sites.

Rights and Permissions

© 2013 Shrimal et al. Published by Rockefeller University Press. Publisher PDF posted as allowed by the publisher's author rights policy at

DOI of Published Version



J Cell Biol. 2013 Apr 1;201(1):81-95. doi: 10.1083/jcb.201301031. Link to article on publisher's site

Related Resources

Link to Article in PubMed

Journal/Book/Conference Title

The Journal of cell biology

PubMed ID