Poster Presentations

Date

2014-05-20

Document Type

Poster Abstract

Description

We demonstrate that streptomycin conjugated on silica nanoparticles (SNP-Str) can be used to effectively target streptomycin-resistant Escherichia coli (E. coli) bacteria by lowering the minimum inhibitory concentration (MIC) of streptomycin up to 2 log folds. Silica nanoparticles were synthesized with an average diameter of 80, 50 and 30 nm, respectively. Streptomycin was then covalently conjugated to SNP using efficient photocoupling chemistry. The MIC for free streptomycin sulfate was recorded as a high 2.0 mg/mL for an engineered Strr mutant E. coli ORN 208. Conjugating the streptomycin to SNP resulted in the decrease in MIC to 161 μg/mL, 63 μg/mL, and 19 μg/mL for SNP of 80, 50 and 30 nm, respectively. In this poster, the synthesis, characterization, and evaluation of SNP-Str will be presented and discussed.

Comments

Abstract of poster presented at the 2014 UMass Center for Clinical and Translational Science Research Retreat, held on May 20, 2014 at the University of Massachusetts Medical School, Worcester, Mass.

DOI

10.13028/ec20-m967

Rights and Permissions

Copyright the Author(s)

Creative Commons License

Creative Commons Attribution-Noncommercial-Share Alike 3.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

Share

COinS
 
May 20th, 12:30 PM

Enhancing Antibiotic Activity Using Nanomaterial-Antibiotic Conjugates

We demonstrate that streptomycin conjugated on silica nanoparticles (SNP-Str) can be used to effectively target streptomycin-resistant Escherichia coli (E. coli) bacteria by lowering the minimum inhibitory concentration (MIC) of streptomycin up to 2 log folds. Silica nanoparticles were synthesized with an average diameter of 80, 50 and 30 nm, respectively. Streptomycin was then covalently conjugated to SNP using efficient photocoupling chemistry. The MIC for free streptomycin sulfate was recorded as a high 2.0 mg/mL for an engineered Strr mutant E. coli ORN 208. Conjugating the streptomycin to SNP resulted in the decrease in MIC to 161 μg/mL, 63 μg/mL, and 19 μg/mL for SNP of 80, 50 and 30 nm, respectively. In this poster, the synthesis, characterization, and evaluation of SNP-Str will be presented and discussed.