UMMS Affiliation
Program in Molecular Medicine; Program in Bioinformatics and Integrative Biology
Publication Date
2020-08-21
Document Type
Article
Disciplines
Amino Acids, Peptides, and Proteins | Ecology and Evolutionary Biology | Genetics and Genomics | Immunology and Infectious Disease | Infectious Disease | Structural Biology | Virus Diseases
Abstract
The novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of COVID-19. The main receptor of SARS-CoV-2, angiotensin I converting enzyme 2 (ACE2), is now undergoing extensive scrutiny to understand the routes of transmission and sensitivity in different species. Here, we utilized a unique dataset of ACE2 sequences from 410 vertebrate species, including 252 mammals, to study the conservation of ACE2 and its potential to be used as a receptor by SARS-CoV-2. We designed a five-category binding score based on the conservation properties of 25 amino acids important for the binding between ACE2 and the SARS-CoV-2 spike protein. Only mammals fell into the medium to very high categories and only catarrhine primates into the very high category, suggesting that they are at high risk for SARS-CoV-2 infection. We employed a protein structural analysis to qualitatively assess whether amino acid changes at variable residues would be likely to disrupt ACE2/SARS-CoV-2 spike protein binding and found the number of predicted unfavorable changes significantly correlated with the binding score. Extending this analysis to human population data, we found only rare (frequency < 0.001) variants in 10/25 binding sites. In addition, we found significant signals of selection and accelerated evolution in the ACE2 coding sequence across all mammals, and specific to the bat lineage. Our results, if confirmed by additional experimental data, may lead to the identification of intermediate host species for SARS-CoV-2, guide the selection of animal models of COVID-19, and assist the conservation of animals both in native habitats and in human care.
Keywords
ACE2, COVID-19, SARS-CoV-2, comparative genomics, species conservation
Rights and Permissions
Copyright © 2020 the Author(s). Published by PNAS. This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY).
DOI of Published Version
10.1073/pnas.2010146117
Source
Damas J, Hughes GM, Keough KC, Painter CA, Persky NS, Corbo M, Hiller M, Koepfli KP, Pfenning AR, Zhao H, Genereux DP, Swofford R, Pollard KS, Ryder OA, Nweeia MT, Lindblad-Toh K, Teeling EC, Karlsson EK, Lewin HA. Broad host range of SARS-CoV-2 predicted by comparative and structural analysis of ACE2 in vertebrates. Proc Natl Acad Sci U S A. 2020 Aug 21:202010146. doi: 10.1073/pnas.2010146117. Epub ahead of print. PMID: 32826334. Link to article on publisher's site
Journal/Book/Conference Title
Proceedings of the National Academy of Sciences of the United States of America
Related Resources
PubMed ID
32826334
Repository Citation
Damas J, Karlsson EK, Lewin HA. (2020). Broad host range of SARS-CoV-2 predicted by comparative and structural analysis of ACE2 in vertebrates. COVID-19 Publications by UMass Chan Authors. https://doi.org/10.1073/pnas.2010146117. Retrieved from https://escholarship.umassmed.edu/covid19/104
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Included in
Amino Acids, Peptides, and Proteins Commons, Ecology and Evolutionary Biology Commons, Genetics and Genomics Commons, Immunology and Infectious Disease Commons, Infectious Disease Commons, Structural Biology Commons, Virus Diseases Commons
Comments
The preprint version is also available in eScholarship@UMMS.
Full author list omitted for brevity. For the full list of authors, see article.