Tailor: a computational framework for detecting non-templated tailing of small silencing RNAs

Min-Te Chou
National Chiao Tung University

Bo W. Han
University of Massachusetts Medical School

Chiung-Po Hsiao
National Chiao Tung University

See next page for additional authors

Follow this and additional works at: https://escholarship.umassmed.edu/gsbs_sp

Part of the [Biochemistry Commons](https://escholarship.umassmed.edu/biochemistry_commons), [Bioinformatics Commons](https://escholarship.umassmed.edu/bioinformatics_commons), and the [Computational Biology Commons](https://escholarship.umassmed.edu/computational_biology_commons)

Repository Citation

Chou, Min-Te; Han, Bo W.; Hsiao, Chiung-Po; Zamore, Phillip D.; Weng, Zhiping; and Hung, Jui-Hung, “Tailor: a computational framework for detecting non-templated tailing of small silencing RNAs” (2015). GSBS Student Publications. 1882.
https://escholarship.umassmed.edu/gsbs_sp/1882

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in GSBS Student Publications by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
Tailor: a computational framework for detecting non-templated tailing of small silencing RNAs

Authors
Min-Te Chou, Bo W. Han, Chiung-Po Hsiao, Phillip D. Zamore, Zhiping Weng, and Jui-Hung Hung

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 License

Rights and Permissions
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

This article is available at eScholarship@UMMS: https://escholarship.umassmed.edu/gsbs_sp/1882
Tailor: a computational framework for detecting non-templated tailing of small silencing RNAs

Min-Te Chou 1,†, Bo W. Han 2,†, Ching-Po Hsiao 1, Phillip D. Zamarė 2, Zhiping Wen 3 and Jui-Hung Hung 1,*

1 Institute of Bioinformatics and Systems Biology and Department of Biological Science and Technology, National Chiao Tung University, Hsin Chu, Taiwan, 300, Republic of China, 2 RNA Therapeutics Institute, Howard Hughes Medical Institute, and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA and 3 Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA

Received March 31, 2015; Revised April 24, 2015; Accepted May 10, 2015

ABSTRACT
Small silencing RNAs, including microRNAs, endogenous small interfering RNAs (endo-siRNAs) and Piwi-interacting RNAs (piRNAs), have been shown to play important roles in fine-tuning gene expression, defending viruses and controlling transposons. Loss of small silencing RNAs or components in their pathways often leads to severe developmental defects, including lethality and sterility. Recently, non-templated addition of nucleotides to the 3′ end, namely tailing, was found to associate with the processing and stability of small silencing RNAs. Next Generation Sequencing has made it possible to detect such modifications at nucleotide resolution in an unprecedented throughput. Unfortunately, detecting such events from millions of short reads confounded by sequencing errors and RNA editing is still a tricky problem. Here, we developed a computational framework, Tailor, driven by an efficient and accurate aligner specifically designed for capturing the tailing events directly from the alignments without extensive post-processing. The performance of Tailor was fully tested and compared favorably with other general-purpose aligners using both simulated and real datasets for tailing analysis. Moreover, to show the broad utility of Tailor, we used Tailor to reanalyze published datasets and revealed novel findings worth further experimental validation. The source code and the executable binaries are freely available at https://github.com/jhhuang/Tailor.
to the genome and relied on post-processing the reported mismatches to gain insights into tailing (8). However, as a heuristic algorithm, BLAST is not guaranteed to nd all the tailing events (22,13) and is signi cantly slower than the NGS aligners, like MAQ (14), BWA (15), Bowtie (16) and SOAP (17). The Chen group used an accurate method that iterates between Bowtie alignment and clipping of unaligned reads (18) to nd all the perfect alignment events of trimmed reads. A similar approach has been used for removing erroneous bases at 3 end to increase the sensitivity of detecting miRNAs (19). Let alone that this method inevitably inserts the running time by them all in a length of tails, extra computational works are still needed to retrieve the identity of each trimmed read. The study by A. M. et al. used a specialized suf x tree data structure to ef ciently nd all the tails without sacri cing the accuracy. However, due to the high memory footprint of the suf x tree data structure, which is about 16 to 20 times of the genome size, the read mapping app has to be performed for each chromosone separately (9,20). Extra processing is still required to nd the alignment from all chromosones.

Moreover, the task becomes even trickier when technical and biological confounding factors are taken into account for better capturing the true tailing events. For example, it is known that reads from D. melongaster have preferential A–C conversions (21,22) and a high error rate at the 3 end of reads, which frequently leads to uncalled bases, i.e. B-tails (23,24). In addition to these technical artifacts enbodied by the sequencers, RNA editing is another common process that could perplex the troubleshooting task. Deaminases acting on RNA (ADARs), whose main substrates are RNA with double-stranded structures (25–27). Since any small silencing RNA is originated from structural RNAs, they are all likely targets of A-to-I editing (28–30). Recent studies have shown that A-to-I editing can occur on the seed region of the miRNA with a fairly high occurrence rate (up to 80% in some cases) and have a direct impact on the selection of their regulatory targets (31,32). Those unmapped bases degenerate the sensitivity and accuracy of short read alignment and have a negative effect on the detection of tailing.

Most of the current methods simply ignore those confounding factors and rely on adapting existing, less specialized tools with extensive post-processing and as a consequence the performance, usefulness and application of tailing analysis is seriously compromised. A fast, accurate and straightforward approach to study tailing is still in need. To ease the cost of performing tailing analysis with dramatically increasing sequencing throughput, here we introduce Tailor—a fast tool that preprocesses and maps sequences to a reference, distinguishes tails from misaligned reads or bad alignment entries with a novel algorithm and reports both perfect and trimmed alignment entries without loss of information. Tailor is capable of analyzing the non-trimmed tailing form RNA and other types of small RNAs and produces publication-quality summary tables. In addition, to better demonstrate the utility of Tailor, we reanalyzed published datasets with Tailor and unearthed several interesting observations (see Applications—case studies in Results). Although the ndings still require thorough experimental validation, it is clear that Tailor would help expand the scope of the study of small silencing RNAs.

MATERIALS AND METHODS

Datasets

D. melanogaster 1 (SRR029608, SRR029633), D. anequei he1 (SRR363984–5), A. gambiae he1 (SRR010683) and A. go2 associated small RNAs in cytoplasm (SRR529097) and nuclear fraction (SRR529100) of Hela were obtained from NCBI Sequence Read Archive. The length distribution of the simulated confounded reads was from the D. melanogaster A go3 associated small RNAs extracted from ovaries (SRR916073). In-house program was used to trim the 3 adaptors and lter the reads with low quality. Randomly distributed reads from fruit-extracted genome was generated by Arti ciaFastG (33). Ten millions reads were randomly chosen using seqtk (github.com/lh3/seqtk.git) with options ‘sam p size=10000000’ to remove multiple mapping reads in some simulation datasets, we used Bowtie iteratively before and after the tail appending and seed mutation to assure each read has only one occurrence in the reference.

Rationale

The principle of detecting non-trimmed bases at the 3 end of reads is basically to nd the longest common fs between the read and each of the suf xes of the reference and then report the read as a tail. Given a read R (M base pairs [bp] long) and all the suf xes (Si) of a reference sequence G (N bp long), one can nd the LCP between R and Si by nding the longest consecutive matches from the 1st base to the last. Since there are totally N suf xes of G, a trivial solution needs at worst MN times of comparison to nd the LCP of R and G; however the performance is unacceptably slow when G is as large as a human genome. Using index structures, such as the suf x tree or suf x array, nding LCPs between the NGS reads and the reference can be solved much ef ciently (34). Recently, the Full-text Index in M inute space (FM-index) derived from the Burrows-Wheeler transform (BW T) (35–37) is widely used in many NGS applications (15–17). The FM-index is both ef cient and space ef cient and can be built from a suf x array and requires only 3 to 4 bits per base to store the index. A more detailed introduction of building the FM-index of long biological sequences is given in the Supplementary Materials. However, since the FM-index is originally designed for matching all bases of a read to a substring of the reference, it cannot be used directly for nding tails. One straightforward solution is to align reads without those non-trimmed bases by repeatedly rem oving one last base in each round of the alignment process until at least one perfect hit is found (18), but the approach scours the speed greatly and requires extensive post-processing. To bene t from the space and time ef ciency of the FM-index,
which is specialized in capturing the non-template bases at the 3' end of reads with confounding factors, such as sequencing errors and RNA editing.

Read mapping algorithm of Tailor

The system of the Tailor algorithm is outlined in Figure 1. Since searching within the FM-index initiates from the 3' end of the query string (i.e. the read) (36), where the non-template nucleotides append, Tailor first makes the reverse-complement of the query sequence so that searching starts from the original 5' end to avoid excessive exhaustive search at the early stage. To do so, the reference should be reversed complemented as well and the coordinate of each alignment should be calculated accordingly. To allow searching against both strands simultaneously and improve the speed, Tailor concatenates the plus and minus strands of the reference and constructs one index instead of two (Figure 1A and Supplementary Materials). Tailor also stores a part of the suffix array similar to other FM-index based aligners (16, 38–40) to achieve fast calculation of the text shift for getting the coordinate of each occurrence. Any alignment whose pre x matching portion exceeds the boundary of the mapped chromosome is ignored. The searching continues until the last invalid base in all the characters of the query to the reference (i.e. the perfect match) or no more bases can be matched (i.e. the pre x matching). In the latter case, Tailor backtracks to the previous matched position and exhaustively enumerates all the possible pre x matches. The unm matched part remains in the query is reported as a tail (Figure 1B).

Clearly, this strategy is vulnerable to confounding factors, since the last mismatch encountered directly denotes the reminder as the tail, which can be very misleading. To accommodate possible sequencing errors or RNA editing events in a read, we devised specialized selection rules as depicted in Figure 2. For each read, the next S (S = 18 by default) bases at its 5' portion is deduced as the seed (Figure 2A). Given the fact that sequencing errors tend to occur at the 3' end (23, 24) and RNA editing events in mRNAs are enriched at the other end (i.e. the seed region) (30–32), the selection rules behave according to whether or not the last mismatch appears in the seed (Figure 2B).

If the last mismatch is not in the seed region, it is regarded as the last base of the tail or a sequencing error. In the case that the last mismatch is at the last base, it is directly deemed as a valid tail (Case 2 in Figure 2B). If the tail is longer than 1 nucleotide (nt), it will be further scanned to make sure that the sequence of the tail consists of multiple non-template nucleotides (Case 3). If the tail is only one nucleotide different from the reference, no tail but a mismatch will be reported (Case 4). Note that in order to differentiate tails from sequencing error, a filtering step based on the quality is necessary to avoid type I error and has been included in Tailor's pipeline (see below; Analysis pipeline). Our current algorithm cannot differentiate the circum stances that the tailing sequence is identical to the genome sequence. This problem is unlikely to be solved computationally and experimental solutions are expected to be more effective (e.g. using mutagen with a defective tailing pathway).

On the other hand, if the last mismatch is in the seed, where RNA editing events occur frequently, the backtracking search will be inhibited and looks for an LCP started from the succeeding base after the mismatch. If no mismatch is found in the redirected search, no tail but a mismatch is reported (Case 5). If a mismatch is found outside the seed, the read is dropped (Case 6 and 7); otherwise, the read is dropped (Case 8). Note that the scenario that Case 4 with another mismatch in the seed is not allowed (i.e. two mismatches as in Case 8), since in principle we want to endow Tailor an error tolerance strategy consistent to that of conventional approaches under the one mismatch setting (e.g. –v 1 in Bowtie).

In plasmid entation

We implemented the core of the Tailor aligner using C++ with built-in support for multithreading. Since Tailor concatenates both strands of the chromosome into one long reference, whose length could exceed the maximum number represented by 32 bits, we have to use 64 bits to store the indexes in all the relevant data structures, which require about 2X memory footprint than that of other FM-index based aligners. To backward compatible with the algorithm introduced in A. Moses et al. (9), which allow only case 1 and 3 in Figure 2, an option (−v) is needed to turn off the detection of other cases. Tailor has a similar command line interface like other NGSa ligners and reports alignments in the SAM (41) format. A tail is described as 'soft-clipping' in CIGAR and the sequences are reported under ‘TLZ’ in the optional ‘c’ field. Mismatches, if allowed (−v), will be reported in the MD tag (see Supplementary Materials form more details). Tailor is freely available online at http://huang.github.io/Tailor under GNU General Public License 2. All the scripts used in preparing this manuscript have also been included in the same GitHub repository. The tailing pipelines were implemented in shell scripting language and R.

Test environment and software

All software tests were performed in the x86_64 CentOS environment with 24 cores and 48G of memory. The Bowtie software used in this study is version 1.0.0, 64-bit. The version of BWA used is 0.7.5a-r405. The version of Tailor used is 1.0.0. All commands and all the tests are listed in the Supplementary Materials.

RESULTS

Perform alignment without confounding factors

To begin with, we ignored confounding factors in the following tests to compare with conventional approaches 1st. To assess the aligning speed directly, we indiscriminately generated 10 million perfectly genome reads from the D. melanogaster genome (simulated tail-free dataset) (33) and randomly appended 1–4 genome-embedded nucleotides to the 3' ends (simulated tailing errors).
Figure 1. BW T-based tailing detection algorithm. A) Procedure of constructing the FM-index from a reference sequence. B) Procedure of query searching using the FM-index. Searching starts from the 3' end of a reverse-complemented query. Green letters indicate the non-templated tail. Red letters indicate the positions being matched against the index. When a non-templated letter is spotted in step 4, the algorithm backtracks to previous steps and reports all the hits and marks the unmatched string as 'tail'.

We compared Tailor with two most popular BW T aligners Bowtie and BWA by applying them on simulated small RNA datasets (Figure 3A). For the simulated tail-free dataset, Tailor outperformed Bowtie and BWA in all thread settings (using 2, 4, 8, 12 and 24 threads; Figure 3A, top). All the running time plotted was the average of the actual running time of repeated experiments. But for the simulated tailed dataset, Bowtie ran slightly faster than Tailor possibly due to the fact that it reported no alignment and did not perform any disk writing (Figure 3A, bottom).

We also performed the speed test with real small RNA sequencing data from hen1+/− and hen1−/− libraries. hen1 encodes for a methyltransferase that adds a methyl group to the 3' end of siRNAs and piRNAs at the 2'-O position and prevents tailing (9, 42). For both hen1+/− and hen1−/− libraries, Tailor outperformed Bowtie and BWA and reproduced the published result that siRNAs, but not mRNAs, were subjected to tailing in the absence of hen1 (Supplementary Figure S1). Please note that Bowtie and BWA in the speed test setting here were not capable of detecting non-templated tails. These tests were just used to compare their execution speed but not functionality.

To prove the accuracy of Tailor when confounding factors were not considered, we then used either Tailor or the Chen method to identify the non-templated tailing events (18). To achieve maximum speed of the Chen method to our best knowledge, we used the `-3k` option of Bowtie to clip k bases off the 3' end of each read. This strategy avoided calling secondary programs such as mappability and allowed us to focus on computational work done other than Bowtie mapping. We started the alignment by setting k to 0. After the initial mapping, the unmatched reads were realigned with an incremented k (k = 1). This process was repeated four times. In the last iteration, four nucleotides were trimmed off from the 3' end (k = 4) and all the tailed reads should have been mapped at this point. In the simulation test, this method finished in 67±1 s with Bowtie being called 477 times (k = 4) and BWA being called 464 times (k = 4).
Performance with error tolerance

It is arguable that some NG S aligners that support local alignment, such as Bowtie2 (38) and BWA, can recover these tails with error tolerance. We simulated two datasets (one normal, one mutated, see below) whose distribution of read length follows that of the real small RNA sequencing dataset (43) (see datasets in Materials and Methods’ section; and also Supplementary Figure S2). For the normal dataset, two million reads were randomly sampled from the reference genome. We intentionally kept reads having just one unique occurrence in the genome and then appended a 1–4 nt non-templated tail on each read. For the mutated dataset, a similar procedure was used to generate another two million reads, but an additional step was added: we introduced one substitution in the nucleotides 2–8 of each read to simulate an RNA editing event as suggested by Vesely et al. (32). Again, this substitution was picked carefully to have only one occurrence in the genome with exactly one mismatc. The simulation guaranteed that there existed only one best alignment to the reference for each read in both datasets (see datasets in Materials and Methods’ section).

Then we examined the mapping of these datasets by Tailor with −v option, Bowtie2 and BWA (see Figure 3C). Tailor clearly reported more unique mappings than others especially in the mutated datasets. When we looked closer to those reads that were mapped to multiple positions, we found Bowtie2 and BWA were more likely to align the tails to the reference than Tailor and create many alternative alignments. Note that the seed region setting was used to allow all three tools for the alignment (S = 20 and−v in Tailor and the equivalents in Bowtie2 and BWA; mismatches in the seed region were allowed) and all tools should try to align the first 20 nt of each read to the genome e, but Bowtie2 and BWA still generated suboptimal alignments. The execution time of three aligners with the error tolerant setting is depicted in Supplementary Figure S3. The complete commands for running all the tests are listed in Supplementary Materials.

We further checked whether the alignments and the tails were correctly reported. As shown in Figure 3D, Tailor was the only tool that gave satisfactory results reporting correct alignments and tails in the mutated dataset. There was no information in the output of BWA to recover the tails, and since most of the reads were aligned to multiple locations, it was expected that extensive post-processing would be needed for extracting the tails. The simulation clearly shows that Tailor is the only practical solution for doing tailing analysis with confounding factors.

Analysis pipeline

In order to provide a thorough and straightforward tailing analysis of deep sequencing libraries to the scientific...
Figure 3. Speed comparison between Tailor and other software. (A) Speed comparison between Tailor, Bowtie and Bowtie using simulated 18–23 nt small RNA with (top) or without (bottom) non-templated tails. Tailor ran with the default setting, which allows no mismatches in the middle of the query. Tailored alignments were reported if perfect match could not be found. Bowtie ran with the ‘−m 2 −v 0’ setting to allow no mismatches while reporting all best alignments. BWA ran with the default setting. Five different CPU settings were used and the running times were plotted. Three replicates were performed. (B) Speed comparison between Tailor, Bowtie and Bowtie (commands can be found in Supplementary Materials) using published small RNA Illumina NGS libraries from hen1+/− and hen1−/− mutants in fruit fly and zebra fish. Same settings were used as in (A). (C) The mappability of the normal (N) and mutated (M) datasets aligned by Tailor, Bowtie2 (with local alignment) and BWA: Multiple mappings were deemed as mismatches since each read was guaranteed to have only one occurrence in the reference. (D) The unique mapping reads shown in (C) were further examined to make sure they were aligned correctly and with proper tails reported (correct tails). Unique mapping reads that did not have correct alignment or tails were categorized another group (wrong tails/ wrong alignment). The unmappable and multiple mapping reads were grouped together (unassigned or unmappable).

In the community, we developed the interface of Tailor to take FastQ files as input and produce publication-ready figures. The workflow chart of the pipeline is summarized in Supplementary Figure S4A. In brief, the input reads, with barcodes and adaptors removed, are subject to a quality-filtering step based on a PHRED score threshold provided by the user (e.g., to get rid of B-tails). The pipeline then applies Tailor to align the high-quality reads to the reference. The information on the length and identity of tails are then retrieved from the SAM-formatted output and summarized to a tabular text file. Additionally, the alignments are assigned to different genomic features (in RNAs, exons, introns, etc.) using BEDTools (44). Tails from different categories are summarized. Publication quality figures depicting the length distribution are drawn using R package ggplot2 (23) (Supplementary Figure S4B). The pipeline also offers isoRNA specific analysis. Balloon plots describing the 5 and 3 relative positions and the tails length are provided for a comprehensive overview (Supplementary Figure S4C).
Applications—case studies

To prove the utility of Tailor, we applied Tailor to re-analyze several publicly available small RNA sequencing datasets and revealed new facts about the data that has not been reported yet. In plants, HUA ENHANCER 1 (HEN1) methylates both mRNA and siRNA at their 3' ends to protect them from non-template uridylation catalyzed by HEN 1 SUPPRESSOR 1 (HESO1), a terminal nucleotidyltransferase that favors uridine as substrate (18, 45). We applied Tailor on small RNA sequencing libraries from WT, hen1−/− and hen1−/−;heso1−/− cells of Arabidopsis and the results showed that siRNAs were subjected to both non-template uridylation and cytosylation without HEN1 while mRNAs were mainly subjected to uridylation. Furthermore, the loss of HESO1 only reduced the uridylation but not cytosylation of siRNAs, suggesting the existence of additional nucleotidyltransferase that prefers cytosine as substrates (Figure 4A).

We then applied Tailor to two NGS libraries that cloned Ago2-associated small RNA from nuclear and cytoplasmic fraction of HeLa cells respectively (46). Since RNAs were cloned using poly-A polynucleotide, T-tails were unable to be re-
covered com putationally. Although most m RNAs showed very similar length distribution and tailing frequency between these two sam ples, one m RNA, m R-15a, exhibited a distinct pattern. In cytoplasm, m R-15a was mainly 21 nt long and had more U tailing for its 22-m er isoform. Surprisingly, in the nuclear fraction, m R-15a peaked at 22 nt and showed strong U tailing (Figure 4B). In addition, m R-15b, which shares its seed sequence with m R-15a and only has one nucleotide different from m R-15a in the 19 nt of its mature sequence, did not exhibit obvious variation between the two sam ples. This suggests that, either 9–12 nt, also known as the ‘central site’ or the 3 end of guide m RNA play an important role in tailing regulation.

Finally, we applied Tailor to study the possible relationship between RNA editing and tailing in m iRNAs. The m iRNA libraries were constructed from the whole brain tissue cells dissected from Adar2−/− and wild-type mice (32). Adar2 is known for its strongest effects on m RNA abundance and editing among the three isoforms of ADARs (47). One of the highly expressed ADAR substrates, m R-379, was shown to be directly edited at the nucleotide we within the seed region and about half of the mature m R-379 were edited by ADAR 2 (32). As expected, the edited form of m R-379 (i.e. m R-379-5G) was greatly reduced in Adar2−/− mice. Surprisingly, we found that the normal miR-379 has much more tailing than miR-379–5G (see Figure 4C). M ono-A and poly-A tails (the bluish portion) were depleted in m R-379-5G, which makes the probability that ADARs and the A-to-I editing could affect the affinity between the m RNAs and the unknown enzyme responsible for adenylylating the 3 end. Since the proportion of different types of tails was unchanged upon Adar2 knockout, the tailing machinery is less likely modulated by ADAR 2 directly but by the subsequent factors after editing in the seed, such as differential targeting, RNA stability change or m RNA-A-Argonaute sorting (1A48).

DISCUSSION

Tailing is a molecular phenomenon that associates with the function, processing and stability of many small RNAs. Computational identification of the tailing sequences from the millions of NGS reads has been proven to be challenging and time-consuming. We herein present a tailing analysis framework, Tailor, which aligns reads to the reference genome, reports tailing events simultaneously and visualizes analysis results. We assessed the accuracy of Tailor by comparing it with the Chen method with simulated reads and found they generated exactly the same results while Tailor only used a third of the time to align and provided much more information compared to the alternative.

When confounding factor was ignored, Tailor was not slower than other well-known fast general-purpose m appers in our tests. We dem onstrated that Tailor executed in a speed that was very competitive to, if not better than, Bow tie and BWA, while providing more functionalities for detecting tailing events. When confounding factors was presented in the reads, it was argued that advanced NGS aligners that support local alignment mode (e.g. Bow tie2) could be competent in handling tails, but we tested them with simulated reads and showed that Tailor performed signiﬁcantly better in both accuracy and efﬁciency.

Tailor’s shell-based framework takes raw reads as input and produces comprehensive tailing analysis results and publication-quality graphs. We reproduced known conclusions drawn from the published tailing study by the pipeline with little extra scripting and post-processing. We also applied the pipeline to other datasets and shed light on other possibilities of the functional role of tailing, such as involving in RNA processing, transport, decay and storage by interacting with other RNA binding proteins (49).

Our aim is to design Tailor to reduce the cost of doing tailing analysis and reinforce or even replace the conventional computational procedure in analyzing all short non-coding RNAs. We expect that Tailor could be applied to a broader scope and subsequently facilitate the understanding of the biological processes related to tailing.

AVAILABILITY

Source code as an Open Source project: http://jhung.github.io/Tailor.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENT

We thank themembers of the Hung, Wang and Zamore laboratories for helpful discussion and critical testing.

FUNDING

National Institutes of Health [GM 62862, GM 65236 to P.Z.], in part and P01 HD078253 to Z.W.; National Science Foundation [103-2221-E-009-128-MY2 to J.H.H.].

CONFLICT OF INTEREST

No declared.

AVAILABLE

Source code as an Open Source project: http://jhung.github.io/Tailor.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENT

We thank themembers of the Hung, Wang and Zamore laboratories for helpful discussion and critical testing.

FUNDING

National Institutes of Health [GM 62862, GM 65236 to P.Z.], in part and P01 HD078253 to Z.W.; National Science Foundation [103-2221-E-009-128-MY2 to J.H.H.].

CONFLICT OF INTEREST

No declared.

REFERENCES
