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Figure 3.4: Alcohol and miR-122 mediated hepatic steatosis is HIF-1α dependent 

Histological assessment of steatosis and hepatocyte injury of (a) H&E staining of 

formalin-fixed, paraffin-embedded (FFPE) livers. (b) Scoring of histological sections for 

severity of steatosis, by veterinary pathologists blinded to group and sample number. (c) 

Quantification of hepatic triglycerides from whole-liver lysates. Pair-fed mice exhibited 

normal parenchymal morphology without fatty-changes. Alcohol and TuD-treated WT 

mice exhibited equivalent levels of steatotic changes, consistent with a chronic alcohol 

consumption. This was only slightly increased in the combination of TuD and alcohol. 

HIF1hepKO, similar to pair-fed mice exhibited no significant changes in lipid 

accumulation.  *P < 0.05, **P<0.005, ***P<0.0005 by two-way ANOVA (n=6-14). 

Long arrows = glycogen-filled hepatocytes. Asterisks=immune cells. Long arrows = 

lipid-filled hepatocytes. Scale bars: 100 µm. H&E liver histology from wild-type pair- 

and ethanol-fed mice.  
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Inflammation is an essential mediatory of ALD, and DAMPs released from 

injured hepatocytes contribute greatly to the recruitment and activation of hepatic  

immune cells. Given the extent of hepatic injury seen in miR-122-TuD, and in particular 

when the combinatorial effect with alcohol, I hypothesized there would be a cooperative 

increase in inflammatory markers. Further, that HIF1hepKO would be protected from this 

inflammation. Analysis of H&E sections and qPCR for immune cell markers revealed 

increased macrophage infiltration (CD68 and F4/80) and activation in anti-miR-122 TuD-

treated, or alcohol-fed mice (Figure 3.5a,b, Figure 3.6a)with an even greater increase in 

mice treated with both TuD and alcohol together. I also found increased levels of IL-1ß, 

MCP-1, and TNF-α protein and mRNA (Figure 3.6b-d), in the livers of alcohol and miR-

122 TuD-treated mice. HIF1hepKO mice treated with either miR-122 inhibition or 

chronic alcohol showed a reduction of inflammatory cell infiltration and activation 

compared to WT mice.  

The development of fibrosis indicates progression of ALD as a result of sustained 

hepatocyte injury, inflammation, and stellate cell activation. However, typical 5-week 

murine models fail to demonstrate significant increases in early fibrotic markers, or 

collagen deposition seen in human disease. I found modest increases in collagen 

synthesis after alcohol feeding indicated by Sirius Red staining (Figure 3.7a,b) and the 

pro-fibrogenic markers, pro-collagen-1α and Acta2 (Figure 3.7c,d). In miR-122 TuD 

mice treated with alcohol, I noted greater increases in pro-collagen-1α and Acta2 
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expression, as well as in Sirius Red staining compared to pair-fed controls. The increase 

in fibrosis in the miR-122 TuD+Et group was abrogated in the HIF1hepKO mice.  
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Figure 3.5: Alcohol and miR-122 mediated hepatic inflammation is HIF-1α 

dependent 

qPCR analysis macrophage markers (a) F/480 and (b) CD68, total liver RNA.  *P < 0.05, 

**P<0.005, ***P<0.0005 by Student’s t test or two-way ANOVA (n=6-14). Scale bars: 

100 µm. H&E liver histology from wild-type pair- and ethanol-fed mice. 
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Figure 3.6: Alcohol and miR-122 mediated hepatic inflammation is HIF-1α 

dependent 

(a) H&E stained histological sections were scored for inflammatory cell infiltration, by 

veterinary pathologists blinded to group and sample number. (b-d) ELISA and qPCR 

analysis of pro-inflammatory cytokines MCP-1, IL-1β, and TNF-α, from total liver 

lysates and total liver RNA respectively. Alcohol and TuD-treated WT mice exhibited 

equivalent levels of pro-inflammatory cytokines. The combination of TuD and alcohol 

exhibited an additive effect on hepatic inflammation. HIF1hepKO mice treated with 

either, alcohol, miR-122 TuD, or their combination exhibited no significant changes in 

expression of pro-inflammatory cytokines.  *P < 0.05, **P<0.005, ***P<0.0005 by 

Student’s t test or two-way ANOVA (n=6-14). Scale bars: 100 µm. H&E liver histology 

from wild-type pair- and ethanol-fed mice. 
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Figure 3.7: miR-122 loss mediates early fibrotic changes through through HIF-1α 

Histological assessment of fibrosis was by (a) Sirius red staining of FFPE liver sections. 

(b) Scoring of collagen deposition was performed by veterinary pathologists blinded to 

group and sample number. qPCR analysis of stellate cell activation markers (c) 

Collagen1a1 (col1a1) and (d) α-smooth muscle actin (Acta2). Treatment with either 

alcohol or miR-122-TuD alone did not induced significant collagen deposition measured 

by Sirius red staining, however the combination of these two treatments resulted in 

significant collagen deposition. This was associated with an increase in markers of 

stellate cell activation. HIF1hepKO mice exhibited no collagen deposition or induction of 

pro-fibrotic markers. *P < 0.05, **P<0.005, ***P<0.0005 by Student’s t test or two-way 

ANOVA (n=6-14). Scale bars: 100 µm. 

 

  



127 

 

  



128 

 

Conclusions and Discussion 

In the previous chapter, I defined a direct link between miR-122 and its primary 

target, HIF-1α, in vitro. Furthermore, I determined that chronic alcohol reduced miR-122 

in humans and in a murine model. In this chapter I sought to explore the functional effect 

of miR-122 modulation on ALD pathogenesis, in vivo. Utilizing an AAV8-delivered 

miR-122 tough decoy resulted in sustained and efficient knockdown of miR-122 in the 

livers of alcohol-fed mice. As hypothesized, this inhibition was associated with a 

proportional increase in HIF-1α mRNA and DNA binding activity.  

A common pattern emerged throughout the data. Alcohol and miR-122 

knockdown independently showed equivalent changes in direct indices of liver injury 

such as serum ALT, steatosis, inflammatory cytokines, and fibrotic markers while 

HIF1hepKO mice were protected from these effects. Furthermore, the reduction of miR-

122 in the liver with alcohol (miR-122-TuD+et), resulted in dramatic increases in hepatic 

injury, greater than treatment with either alone.  

This is identical to the phenotype our lab has previously observed using an in vivo 

degradation-resistant form of HIF-1αin murine hepatocytes (HIF1dPA). HIF1dPA mice, 

which had a higher HIF-1αexpression in hepatocytes, developed steatosis and liver injury 

without the presence of alcohol. When given alcohol, HIF1dPA mice exhibited a 

synergistic phenotype similar to that seen in miR-122-TuD+Et, having greater liver injury 

than either treatment alone, and further increasing HIF-1α mRNA expression and 

activity.   
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There are many potential reasons for this phenomenon. First, is that the further 

reduction in miR-122 seen in TuD+Et mice when compared to TuD+PF mice, allowed 

for a dose-responsive increase in HIF-1α mRNA. However, Scr+Et and TuD+Et mice 

exhibited 50% and 85% reductions in miR-122 respectively. Therefore, if the increase is 

exclusively miR-122 dependent, I would have expected there to be greater HIF-1α 

mRNA in TuD+Et mice when compared to Scr+Et mice. Second, is that the influence of 

miR-122 on HIF-1α is limited to the availability of the transcript, and that alcohol also 

influences HIF-1α transcription and activity. As described above, in the presence of 

hypoxia HIFs are post-transnationally stabilized, allowing for their accumulation and 

increased transcriptional activity. It is well established that chronic alcohol increases 

oxygen demand in the liver, and specifically, in zone 3 of the hepatic lobule. 

Furthermore, endotoxin or LPS in portal circulation is a common feature of human and 

murine models of ALD. It is therefore likely that there is a threshold by which miR-122 

increases HIF-1α mRNA and the hypoxic microenvironment within the hepatic further 

contributes to this via increased transcription and post–translational stabilization. 

However, these explanations do not account for the slight, but significant increase 

in liver injury seen in HIF1hepKO mice treated with TuD+alcohol. While, HIF1hepKO 

TuD+Et mice exhibited dramatically reduced serum ALT and steatosis with no change in 

markers of inflammation, and fibrosis when compared to WT mice or other HIF1hepKO-

treated mice, increases in ALT were noted. These findings could be due to hypoxic 

activation of HIF-2α. Similar to HIF-1α, degradation resistant HIF-2α (HIF2dPA) has 

also been shown to induce hepatic lipid accumulation. Additionally, unpublished data 
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from Barath Nath, a former MD/PhD student in the lab, showed that alcohol increased 

both HIF-1α and HIF-2α. The role of relative role of HIF-1α vs HIF-2α in hepatic 

steatosis is not completely understood. Previous studies have suggested that HIF2dPA 

mice exhibit more steatosis and liver injury when compared to HIF1dPA. It is likely that 

the dramatic increases in liver injury seen in WT mice treated with TuD+Et, could be due 

to the simultaneous activation of HIF-1α and HIF-2α, and therefore not completely 

negated in HIF1hepKO mice. However, given the extent of protection from alcohol, miR-

122 knockdown, and their combination afforded by removal of the HIF-1α allele, it 

appears that in this model of alcoholic liver disease, the influence of other factors, such as 

HIF-2α, are minimal when compared to HIF-1α. 

Finally, miR-122 has been shown to directly and indirectly regulate a complex 

network of genes involved in hepatic lipid homeostasis, hepatocyte differentiation, and 

survival pathways.  It could be that in TuD+Et mice, which resulted in 90% loss of miR-

122, in addition to the pleotropic effects of alcohol, the loss of miR-122 could still drive 

pathogenesis through pathways outside the miR-122-HIF-1α axis.  

Amidst this pattern of data, another striking finding was apparent. The deletion of 

HIF-1α in hepatocytes was sufficient to reduce the steatosis, inflammation and fibrosis 

due to alcohol, miR-122 inhibition or together. Together, these data suggest that the 

increased pro-inflammatory and pro-fibrotic state are at least partially dependent upon 

HIF-1α-mediated hepatocyte injury due to the reduction of miR-122, and that restoration 

of miR-122 may provide therapeutic benefit.  
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CHAPTER 4: THERAPEUTIC RESTORATION OF MIR-122 REVERSES ALCOHOL-
INDUCED LIVER INJURY VIA HIF-1ΑLPHA IN VIVO 

Summary 

Using AAV8 anti-miR-122 TuD based knockdown system in a murine model of 

alcoholic liver disease I demonstrated that the reduction of miR-122 due to chronic 

alcohol acts through HIF-1α upregulation. Furthermore, hepatocyte-specific HIF-1α-null 

mice were protected from this effect. In this chapter, I sought to determine whether 

therapeutic restoration of miR-122 in alcohol-fed mice could reverse hepatic injury. 

Using a similar AAV8-delivery system, I overexpressed miR-122 the livers of alcohol-

fed mice. Therapeutic restoration resulted in a significant improvement in serum ALT, 

and inflammation suggesting a protective role for miR-122 in ALD. 
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Introduction 

Alcohol-triggered hepatocyte steatosis and cell death results in the activation and 

infiltration of immune cells within the liver leading to advanced hepatic injury. The 

subsequent release of inflammatory cytokines such as TNF-α and IL-1β causes further 

hepatocyte cell death resulting in a continuous feedback loop of cellular injury, driving 

ALD pathogenesis. 11,14,15 While the etiology of ALD and abundance of evidence clearly 

indicates that abstinence is the best treatment, even with abstinence, many patients still 

progress to hepatic cirrhosis. Additionally, with a high rate of recidivism, undiagnosed 

alcohol abuse, comorbidities and an ever-increasing mortality rate, necessitates the 

development of additional medical interventions. 276 10,11  

Lifestyle changes are the cornerstone of ALD treatment. 276 Due to the significant 

calorie consumption from alcohol and diminished intestinal absorptive capabilities, 

nutritional deficiencies of macro an micronutrients are a common issue among chronic 

alcoholics. 277-279 Patients have been found to have deficiencies in protein consumption as 

well as vitamins A, D, thiamine, folate, zinc. 10,11,280,281 Gross calorie replenishment, and 

specifically, the promotion of a positive nitrogen balance has shown some efficacy in 

improving liver function and reversing metabolic syndrome, a significant comorbidity 

and contribute to disease progression. 282,283 Complimentary to nutritional deficiencies, is 

the depletion of antioxidants leading to a reduced capacity of hepatocytes to safeguard 

against reactive oxygen species. Three well studied treatments involve supplementation 

with Vitamin E, silymarin (milk thistle), and N-acetyl cysteine (NAC). Silymarin and 

NAC both function by increasing glutathione (GSH) in the liver, an essential antioxidant. 
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Together, all three have been shown to protect against lipid peroxidation and oxidative 

damage induced by free radicals in animal models of chronic alcohol. 31,284-286 287 

However, their efficacy in humans has been minimal, particularly in cases of severe 

alcoholic hepatitis. 288-292 The failure of these may be the persistence of oxidant stress 

within the liver along with other comorbidities. 

 Pharmacologically, there are two classes of therapeutics that have been explored; 

immunomodulatory and metabolic, to inhibit hepatic inflammation and reverse steatosis 

respectively. Immunosuppressive therapies first emerged 40 years ago with the use of 

corticosteroids.293 Since these initial studies, they remain the standard of care in spite of 

lackluster efficacy. 294 Subsequently, several agents have been studied to inhibit 

inflammatory pathways targeting cytokines, specifically TNF-α. One such agent tested to 

inhibit TNF-α was a phosphodiesterase (PDE) inhibitor, pentoxiphylline (PTX). 295 This 

orally bioavailable PDE inhibitor was shown to reduce the production of many pro-

inflammatory cytokines, including TNF-α.  While initial studies demonstrated reduced 

mortality at three months, subsequent studies have failed to recapitulate these robust 

findings. The use of PTX is approved for patients with severe alcoholic hepatitis. 296 

Additionally, specific anti-TNF-α therapies using monoclonal antibodies against 

(inflixamab) as well as TNF-α receptor antagonists (etanercept) have also been explored. 

297,298 However, given the essential role TNF-α has in liver regeneration and in pathogen 

defense, raised questions about its safety. 299 10 While mortality was moderately 

decreased when compared to control groups, studies were halted due to complications 

due to opportunistic infections. 10,12,300,301 
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Currently, emerging therapeutics include the use of nuclear receptor (RXR/FXR) 

agonists to reverse hepatic steatosis, IL-1β receptor antagonists to inhibit cytokine-

induced cellular damage, as well as S-adenosylmethionine supplementation to buffer 

against ROS. As with previous therapies, all have shown efficacy in animal models, and 

clinical trials are ongoing. 274,302  

Amidst scores of studies and years of potential therapies, a common theme that 

multi-targeted approaches are necessary, and further, that immunosuppressive 

monotherapy, without correction of parenchymal cell function, is insufficient to reverse 

ALD pathogenesis.  

In the previous chapters I found that hepatic miR-122 levels are 2-fold lower in 

hepatocytes of alcohol-fed mice and human alcoholic cirrhosis patients compared to 

controls. Using AAV-delivered anti-miR-122 TuDs, I have demonstrated a causal link 

between the alcohol-induced reduction of miR-122, and ALD pathogenesis via HIF-1α. 

These studies showed that the loss of miR-122 directly correlated with increasing 

steatosis, inflammation, and fibrosis. Given these findings, I hypothesized that 

therapeutically restoring miR-122 in alcohol-fed mice could reverse chronic alcohol-

induced liver injury.  

Many mechanisms have been developed for modulation of miRNAs, and 

specifically miR-122, in the liver. ASOs, LNAs, and miRNA sponges have all been 

extensively studied and modified to enhance specificity, potency, and stability. However, 

contrary to ASOs, delivery of small single-stranded or duplex miRNA mimics has proven 

difficult. These naked RNA molecules lack specificity and stability and while chemical 
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modifications can improve these parameters, the issue of TLR activation has not been 

overcome (Figure 1.5). 

Currently, two strategies for delivery have been developed; cationic lipid 

(liposomes) carriers and viral-vector based delivery systems (AAVs). These liposomes 

consist of cationic lipid bilayers complex with the anionic nucleic acid cargo, the result is 

a positively charged bilayer able to bind the anionic surface of target cells. 256,257 Further, 

the addition of surface modifications can facilitate cell or organ specific delivery or 

subcellular release in either the nucleus, cytoplasm, or endosome. 258-260 While these 

modifications can increase functional efficiency of the liposomes, their utility has not 

matched that of AAVs. 238  

Many AAV serotypes have been used to deliver transgenes to the liver, including 

AAVs 2, 8, and 9. However, AAV8 has shown to have the most selective tropism and 

least immunological memory among the population. Given this, the use of AAV8 to 

deliver Factor IX to Hemophilia B patients has successfully completed clinical trials and 

is approved for use in patients. 264,265,269 It is important to mention that the over 

expression of short hairpin RNA in rats has been shown to cause hepatotoxicity, organ 

failure and death. 159 This toxicity been associated caused by the saturation of exportin-5. 

However, it has been suggested that if the delivered transgene produces pri-miRNA 

constructs more similar to that of endogenous transcripts, this toxicity can be reduced or 

mitigated. 159,270-272 

Taking these into consideration, through my collaboration with the Gao lab, we 

modified the anti-miR-122-TuD system described in chapter 3 by replacing the TuD with  
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a pri-miR-122 insert under the control of a U6 promoter (miR-122-OX). Using an AAV8, 

mice were treated with the overexpression construct while on chronic alcohol.  The 

restoration of miR-122 effectively reduced the steatosis, inflammation and hepatic injury 

associated with chronic alcohol.  

 

  



138 

 

Methods 

Animal Studies 

All animals received care in compliance with protocols approved by the 

Institutional Animal Use and Care Committee (IACUC) of the University of 

Massachusetts Medical School. Wild-type (WT) mice (C57/Bl6), Alb-Cre, and HIF-

1αflox/flox
 
mice were purchased from Jackson Laboratories (Bar Harbor, ME) and 

backcrossed onto a C57/Bl6 background. 6-8 week old mice were gradually acclimated to 

a Lieber-DeCarli liquid diet with 5% ethanol (vol/vol) over a period of 1 week, then 

maintained on the 5% diet for 4 weeks (total of 5 weeks). Consumption was recorded 

daily and isocaloric amounts of a control diet (in which dextran-maltose replaced calories 

from ethanol) were dispensed to pair-fed (PF) animals. Weights were recorded weekly. 

At the conclusion of the 5-week feeding, mice were weighed, blood collected, and 

euthanized. Livers were dissected, weighed and divided into lipid nitrogen for protein and 

biochemical assays, fixed in 10% phosphate-buffered formalin for histological analysis, 

preserved in OCT frozen section preparation solution, or soaked in RNALater (Qiagen, 

Hilden, Germany, Hilden, Germany). Blood was allowed to clot and serum obtained 

using gel-based serum separator tubes.  

 

Isolation of primary mouse hepatocytes and LMNCs  

Anesthetized animals were perfused by way of portal vein with saline solution, 

followed by enzymatic digestion, as previously described.75 The hepatocytes were 

separated by centrifugation. In vitro experiments. Primary hepatocytes were cultured in 
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low-glucose DMEM supplemented with 10% fetal bovine serum, 1% Anti-Anti, 1% 

gentamycin, 1% insulin, transferrin, selenium solution. Primary hepatocytes were seeded 

in 6-well collagen-coated plates (Biocoat, Becton Dickinson). Before starting stimulation 

experiments, hepatocytes were rested for 4 hours.  

 

RNA extraction and real-time PCR 

Total RNA was extracted using the Quiagen miRNeasy kit (Qiagen, Hilden, 

Germany, Hilden, Germany) according to the manufacturer’s instructions. Briefly, tissue 

samples were lysed in QIAzol Lysis reagent (Qiagen, Hilden, Germany), homogenized 

with stainless steel beads in TissueLyser II (Qiagen, Hilden, Germany) followed by 

miRNA isolation following manufacturer’s instructions and DNase 1 Digest. RNA was 

quantified using Nanodrop 2000 (Thermo Scientific, Waltham, MA). Complementary 

DNA (cDNA) synthesis was performed by reverse transcription of 1 ug total RNA using 

the iScript Reverse Transcription Supermix (Bio-rad, Hercules, CA). Real-time 

quantitative PCR was performed using Bio-Rad iTaq Universal SYBR Green Supermix 

and a CFX96 real-time detection system (Bio-Rad Laboratories). Primers were 

synthesized by IDT, Inc. The primer sequences are listed in Table 2.1. Relative gene 

expression was calculated by the comparative cycle threshold (Ct) method. The 

expression level of target genes was normalized to the house-keeping gene, 18S rRNA, in 

each sample and the fold-change in the target gene expression between experimental 

groups was expressed as a ratio. Melt-curve analysis was used to confirm the authenticity 

of the PCR products. 
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miRNA Analysis 

Reverse transcription (30 min - 16°C; 30 min - 42°C; 5 min - 85°C) was 

performed in Eppendorf Mastercycler (Eppendorf, New York, USA) using 10 ng RNA, 

TaqMan primers and miRNA Reverse Transcription Kit (Applied Biosystems, Foster 

City, CA) followed by quantitative RT- in CFX96 (Bio-rad, Hercules, CA) using 

TaqMan Universal Probes Master Mix (Bio-rad, Hercules, CA).  All samples were 

normalized to snoRNA202, or U6 expression based on Normfinder 

(http://moma.dk/normfinder-software) analysis of loading control stability. hsa-miR-122-

FAM, U6-FAM, and sno202-FAM primer sets were purchased from Applied Biosystems.  

 

Construction of miR-122 antagonist and overexpression plasmids 

The scAAV-anti-miR-122 TuD and scAAV-anti-SCR TuD constructed were 

made as previously described Xie et al., 2012.221 The BamHI fragment carrying anti-

miR-122 TuD was replaced with the pri-miR-122 sequence amplified from C57/b6 

mouse genome DNA to generate scAAV-pri-miR-122 construct using primers: 

GCGGGATCCGACTGCAGTTTCAGCGTTTGG, and 

CGCGGATCCAAAAAAGACTCTAGGGCCCGACTTTACA.221 Mice were treated by 

tail vein injection with AAV vectors at 6 × 1011 genome copies/mouse or approximately 

3×1013 genome copies/kg.221 

Biochemical Assays 
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Serum alanine aminotransferase (ALT) levels were determined using a 

commercially available reagent (Advanced Diagnostics Inc) as described. Serum alanine  

aminotransferase (ALT) was determined using a commercially available reagent 

(Advanced Diagnostics Inc, Plainfield, NJ). 15ul of serum was mixed 1:10 with assay 

reagent diluted according to the instructions of the manufacturer, and UV absorbance at 

37 degrees C was measured over three minutes. The average change in absorbance per 

minute interval is then multiplied by a conversion factor to yield ALT levels.  

 Liver triglycerides were extracted using a 5% NP-40 lysis solution buffer. 

Triglycerides were quantified using a commercially available kit (Wako Chemicals) 

followed normalization to protein amount. 

Protein concentration was determined by by BCA protein assay (ThermoFisher 

Scientific) by using 10 uL of 1:10 or serially diluted lysate and incubating in assay 

reagent for 30 minutes at 37 degrees C. Absorbance was measured at 562nm on a 96 well 

plate using a plate reader. Concentrations were interpolated using 4-PL regression 

derived from a standard curve generated using bovine serum albumin standard (Pierce). 

 

Nuclear Extraction 

50mg of snap-frozen liver tissue was washed in 10-fold excess volume TKM-0.32 

buffer (0.32M sucrose, 50mM Tris-HCl, 25mM KCl, 5mM MgCl, 5mM PMSF), with 

protease inhibitor tablets 1 per 10 mL, (Roche) and homogenized using a hand-held 

homogenizer. Homogenates were transferred to microcentrifuge tubes and centrifuged 

(1000rpm for 10 minutes at 4 degrees C). Pelleted material was resuspended in TKM-2.0 
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buffer (2M sucrose, 50mM Tris- HCl, 25mM KCl, protease inhibitor cocktail) and 

homogenized again by handheld homogenizer. Pellets were collected by centrifugation 

(14000rpm for 30 minutes at 4 degrees C) and resuspended in 500ul Buffer A (10mM 

Hepes/KOH, pH 7.9, 2mM MgCl, 1mM EDTA, 10mM KCl, 1mM DTT, 5mM PMSF, 1 

protease inhibitor tablet). Pellets were again collected by centrifugation (14000rpm for 30 

minutes  at 4 degrees C) and resuspended in 50ul Buffer B (10mM Hepes/KOH pH 7.9, 

2mM MgCl, 1mM EDTA, 50mM KCl, 300mM NaCl, 2mM DTT, and 5mM PMSF with 

protease inhibitor tablets 1 per 10 mL, (Roche), 10% glycerol. Pellet was resuspended 

was sonicated at 40% duty cycle 1 second on/off cycle, frozen at -80 degrees overnight, 

and thawed with gentle agitation at 4 degrees Celsius. Supernatant containing nuclear 

extract was collected after centrifugation (14000rpm for 30 minutes  at 4 degrees C) and 

assayed for protein concentration.  

 

Electrophoretic Mobility Shift Assay  

The DNA binding activity of HIF-1a was assessed by electrophoretic mobility 

shift assay as described previously (Nath B., Hepatology. 2011 May;53(5):1526-3).75 A 

consensus double-stranded Hypoxia Response Element (HRE) (Santa Cruz Biotech, CA) 

oligonucleotide was used for EMSA. End-labeling was accomplished by treatment with 

T4 kinase in the presence of [P32]ATP. Labeled oligonucleotides were purified on a 

polyacrylamide copolymer column (Bio-rad, Hercules, CA). Five micrograms of liver or 

hepatocyte nuclear protein was added to a binding reaction mixture containing 50 mM 

Tris-HCl, pH 7.5, 5 mM MgCl2, 2.5 mM EDTA, 2.5 mM DTT, 250 mM NaCl, 20% 
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glycerol, 20 &g/ml BSA, 2 & poly(dI–dC) and 50,000 cpm g32P-labeled HIF-1a 

consensus oligonucleotide.  Cold competition was done by adding a 20-fold excess of 

specific unlabeled double-stranded probe to the reaction mixture. Samples were 

incubated at room temperature for 30 min. Reactions were run on a 4% polyacrylamide 

gel and the dried gel was exposed to an X-ray film at –80°C overnight. Band density was 

quantified using ImageJ64 image analysis. 

 

Whole Cell Lysate  

Approximately 50 mg of liver tissue was washed in ice cold PBS and 

homogenized in lysis buffer (9.5ml RIPA buffer, 1mM NaF, 2mM Na3VO4, 1 protease 

inhibitor tablet, 5mM PMSF) with stainless steel beads in TissueLyser II (Qiagen, 

Hilden, Germany, Hilden, Germany). After 10 minutes of incubation on ice, homogenates 

were centrifuged at 14,000xg for 10 minutes at 4 degrees C. The supernatant (clarified 

whole cell lysate) was collected and stored in aliquots at -80 degrees C.  

 

ELISA 

Cytokine levels were monitored in 25 mg of liver whole cell lysates diluted in 

assay diluent following manufacturer instructions. MCP-1 and TNFa were measured by 

use of specific anti-mouse ELISA from BioLegend. IL-1β was measured by use of 

specific anti-mouse ELISA (R&D Systems) that recognizes both pro- and cleaved- IL-1β.  

 

Histopathological analysis 
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Sections of formalin-fixed, paraffin-embedded livers were stained with 

hematoxylin and eosin (H&E), or Sirius Red and assessed for histological features of 

steatosis, inflammatory cell invasion, and fibrosis.  

 

Statistical Analysis  

Statistical significance between two groups was determined using two–tailed t-

test. Two-way ANOVA and Dunnett’s multiple comparison post-test were used to 

compare the means of multiple groups. Outliers were determined using ROUT method 

with a q of 1%. Data are shown as mean ± SEM and were considered statistically 

significant at P < 0.05. GraphPad Prism 6.02 (GraphPad Software Inc.) was used for 

analysis.  

Results 

To assess the therapeutic potential of miR-122 restoration on the pathogenesis of 

alcoholic liver disease, I developed an rAAV8 vector expressing miR-122 (miR-122-OX) 

or a scrambled (scr).  In a preliminary experiment, I established that wild-type alcohol-

fed mice develop significant liver injury by week 2 of the 5-week alcohol model (Figure 

4.1a) and that the rAAV8 miR-122-OX construct requires 3 weeks for full expression in 

the liver (Figure 4.1b). Therefore, I treated pair-fed and alcohol-fed mice with 6x1011 

viral particles containing Scr or miR-122-OX construct by tail-vein injection on week 

two of a five-week alcohol feeding model (Figure 4.1c).  

qPCR analysis demonstrated treatment with rAAV8-miR-122-OX effectively 

increased mature miR-122 levels in the livers of pair-fed and alcohol-treated mice 
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( 

Figure 4.2a). However, I found that in isolated hepatocytes, it appeared that the vector did 

not increase miR-122 in isolated hepatocytes in miR-122-OX+PF mice ( 

Figure 4.2b). To confirm this finding, I performed a northern blot from total RNA 

isolates from hepatocytes which showed a similar patterns of expression ( 

Figure 4.2c).  

In spite of these findings, consistent with the in vitro data presented in chapter 2 

(Figure 2.6a), in vivo overexpression of miR-122 prevented the alcohol-induced increase 

in HIF-1α mRNA and DNA binding activity (Figure 4.3a,b). Overexpression of miR-122 

in hepatocytes resulted in dramatic reductions in serum ALT (Figure 4.4a), and steatosis 

on histology and in liver triglycerides induced by alcohol (Figure 4.4b,c). Furthermore, 

miR-122-OX treatment prevented induction of inflammatory cytokines in ALD including 

TNF-α, MCP1, and IL-1ß (Figure 4.5a-c).  

Conclusions and Discussion 

Herein, I hypothesized that correction of the alcohol-induced inhibition of miR-

122 via ectopic expression could reverse liver injury in a murine model of alcoholic liver 

disease. Using an AAV8 miR-122-OX vector system developed by my collaborators in 

the Gao lab, I was able to restore miR-122 in the livers of alcohol fed mice. Furthermore, 

this restoration was associated with the reduction in multiple indices alcohol-induced 

liver injury including steatosis, serum ALT, and inflammatory markers. Taken together, 
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these data suggest that restoration of miR-122 in the liver may be a viable therapeutic 

option.  
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Figure 4.1: Design of miR-122 treatment model. 

(a) Serum ALT from week 2, of a Liber DeCarli chronic alcohol feeding model. (b) 

Secreted Gaussia Luciferase (Gluc) activity measured weekly from (n=3-5) alcohol-fed 

mice given 6x1011 viral particles by tail vein injection. Vector expression increased 

steadily week by week reaching a peak at 3 weeks post injection. (c) Schematic 

representation of rAAV8-miR-122-OX treatment model. *P < 0.05, **P<0.005, 

***P<0.0005 by Student’s t test or two-way ANOVA. 
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qPCR analysis 

of expression 

from (a) total liver and (b) hepatocyte RNA. (c) Northern blot for hepatocyte miR-122. 

U6 was used as a loading control. Data is represented as fold change relative to WT-PF 

mice. Treatment of PF and Et-fed WT mice with rAAV8 –pri-miR-122 (miR-122-OX) 

increased miR-122 expression in total livers when compared to respective PF-fed 

controls. qPCR and northern blot from hepatocyte RNA extracts revealed a reduced, but 

not statistically significant, level of miR-122 in PF+miR-122-OX mice. Alcohol-fed mice 

treated with miR-122-OX demonstrated significant increases in miR-122 in both total 

liver and hepatocytes. *P < 0.05, **P<0.005, ***P<0.0005 by two-way ANOVA. (n=5) 

Figure	4.2:	miR-122	expression	in	AAV8-miR-122-OX	treated	mice.	
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Figure 4.3: Restoration of miR-122 inhibits alcohol-induced increases of HIF-1α 

HIF-α (a) mRNA and (b) DNA binding activity in hepatocytes measured by qPCR and 

EMSA respectively. EMSA analysis was performed from hepatocyte nuclear extracts 

from PF and ET-fed mice treated with either AAV8 Scr or miR-122-OX. Ectopic 

expression of miR-122 inhibits the alcohol-induced increase of HIF-1α mRNA and DNA 

binding activity in hepatocytes. *P < 0.05, **P<0.005, ***P<0.0005 by two-way 

ANOVA. (n=5) 
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Figure 4.4: Treatment with rAAV8-miR-122-OX reverses alcohol-induced liver 

injury and steatosis 

(a) Serum ALT, (b) H&E histology and (c) hepatic triglycerides from livers of either PF- 

or Et-fed WT mice treated with rAAV8-Scr or rAAV8-miR-122-OX vectors. Restoration 

of miR-122 reduced liver injury and hepatic steatosis in alcohol-fed mice. Alcohol-fed 

mice exhibited extensive steatosis and glycogen depletion. miR-122-OX-treated PF and 

Et-fed mice exhibited no evidence of steatosis or parenchymal changes. (n=8-12) Long 

arrows = glycogen-filled hepatocytes. Asterisks=immune cells. Long arrows = lipid-filled 

hepatocytes. Scale bars; 100 µm. *P < 0.05, **P<0.005, ***P<0.0005 by two-way 

ANOVA. 
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Figure 4.5: Treatment with rAAV8-miR-122-OX reverses alcohol-induced 

inflammation 

(a-c) ELISA and qPCR analysis of pro-inflammatory cytokines MCP-1, IL-1β, and TNF-

α, from total liver lysates and and total liver RNA respectively. Et-fed mice treated with 

rAAV8-miR-122-OX vectors demonstrated reduced pro-inflammatory cytokines when 

compared to scramble treated controls.  (n=8-12) Scale bars; 100 µm. *P < 0.05, 

**P<0.005, ***P<0.0005 by two-way ANOVA. 
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Amidst the data, it was surprising to find that in hepatocytes isolated from pair-fed mice 

treated with the AAV8 miR-122 overexpression construct did not appear to have 

increased miR-122 when assessed by qPCR and northern blot. In contrast, ethanol-fed-

mice treated with the overexpression vector did indeed exhibit increased miR-122 

expression in total liver extracts and isolated hepatocytes by qPCR and northern blot 

analysis.  

As described before, saturation of exportin 5 (XPO5) during overexpression of 

shRNAs has been described. This is unlikely given that studies demonstrating saturation 

of miRNA biogenesis pathways used shRNA expression vectors on non-endogenous 

products and only noted toxicity at high vector doses (1x1012) while I used 1/2 this dose 

(6x1011).159,303 While I did not observe any mortality or increase in serum ALT in either 

pair-fed or alcohol-fed mice, this effect may have been evident given an extended time 

period.159,303 Alternatively, it may be that pair-fed mice, when treated with the AAV8 

exhibited transient hepatotoxicity due to XPO5 saturation in the three weeks between 

injection of the vector and the completion of our study. Given that liver regeneration 

studies have shown a doubling in liver mass within 48 hours after 2/3 partial hepatectomy 

studies, a transient toxicity would greatly reduce the number of hepatocytes expressing 

the miR-122 transgene but exhibit no observable defects at the time of necropsy. It has 

also been shown that kupffer cells in the liver may capable of expressing AAV8 delivered 

transgenes. While AAV8 does can transduce 90-95% hepatocytes depending on dose, it 

has been shown that macrophages may in fact be either directly infected or in their 

capacity as phagocytic cells, internalize the viral particles. 238,304-306 Therefore, KCs may 
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function as a reservoir for miR-122 transgene expression while it is lost in hepatocytes. 

Alternatively, given that no ALT or mortality was noted, a yet, undefined feedback 

mechanism for mature miR-122 levels may exist.  

Finally, one other disparity regarding this data remains unanswered; why did both 

the hepatocyte and total liver qPCR and northern blot from alcohol-fed mice treated with 

the miR-122-OX construct, appropriately reflect the increase in miR-122 when PF mice 

did not? As described before, this may be an extension of the toxicity due to XPO5 

saturation. As will be explored in the following chapter, the decrease in miR-122 

observed with alcohol is due a decrease in pri-miR-122 transcription, thereby decreasing 

the amount of pre-miR-122 requiring nuclear export via XPO5. Therefore, the 

introduction of a transgene encoding the pre-miR-122 in alcohol-fed mice would be 

below the toxic threshold allowing sustained expression in hepatocytes. 

Overall, these data demonstrate that restoration of miR-122 in hepatocytes can 

suppress the pathogenic features of ALD via inhibition of HIF-1α in vivo and indicates 

that hepatocyte-specific miR-122 delivery could be a therapeutic consideration in ALD. 
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CHAPTER 5: ALCOHOL REGULATES MIR-122 THROUGH ALTERNATIVE 
SPLICING OF GRAINYHEAD PROTEINS 

Summary 

The data presented in previous chapters clearly demonstrates that essential role of miR-

122 in maintaining hepatic normalcy and that sustained inhibition can cause an ALD-like 

phenotype. However, the question still remained as to the mechanism by which alcohol 

inhibits miR-122. The high level of miR-122 in the liver is maintained by host of 

hepatocyte specific transcription transcription factors. Recently, it has been shown that 

grainyhead-like 2 (GRHL2), a transcription factor not typically expressed in mature 

hepatocytes, could be a potential inhibitor of miR-122 expression.  In this chapter I will  

provide evidence to suggest that not only does alcohol regulate miR-122 through 

upregulation of GRHL2 in hepatocytes, but that alcohol regulates alternative splicing  

events within the grainyhead family of proteins. 
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Introduction 

The question remained as to the mechanism by which miR-122 expression is 

reduced. As shown in chapter 2, while AAV8-miR-122-TuD achieved a robust 

knockdown of miR-122 in pair-fed mice, I consistently observed a further ~50% 

reduction in miR-122 in alcohol-fed mice. Furthermore, while I have demonstrated that 

restoration of the mature form of miR-122, and HIF-1α-null mice are protected from the 

phenotype of ALD, the inhibitory effect of alcohol on miR-122 expression appeared to 

still be present. Additionally, in chapter 3, both PF and Et mice treated with the U6-

driven AAV8-miR-122-OX achieved similar mature miR-122 expression levels from 

total liver RNA. Given that the transgene encoded a large segment of the pri-miR-122 

genomic region requiring processing via endogenous miRNA biogenesis pathways, and 

suggesting that the change in promoter was able to negate this inhibitory effect therefore, 

I hypothesized that alcohol was not effecting the processing of of miR-122, rather its 

transcription. 

Many transcription factors have been shown to regulate miR-122 transcription, 

including hepatocyte nuclear factors (HNFs) 1, 3, 4, and 6.135,185,187,241 Recent studies 

have pointed to grainyhead like-2 (GRHL2), a homolog of the drosophila grainyhead 

(GRH) transcriptional regulator, as a potential repressor of miR-122 expression in hepatic 

progenitor cells during hepatobilliary differentiation.307  

GRHL2, a homolog of the Drosophila protein Grainyhead (GRH), is one of the 

three mammalian proteins within the Grainyhead-like (GRHL) family of transcription 

factors.  
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The three GRHL proteins are numbered 1-3, however they have gone by other 

names as well; GRHL1 (mammalian grainyhead, MGR, LBP-32), GRHL2 (brother of 

mammalian grainyhead, BOM), and GRHL3 (sister of mammalian grainyhead, SOM). 

Within the mammalian GRHL family, each of the three grainyhead proteins have been 

found to have tissue and developmentally distinct expression patterns. 308 309  They are 

found primarily in epithelial tissues, in organs such as epidermis, oral and olfactory 

epithelium, kidneys and urogenital tract, stomach and the digestive tract, heart and lung. 

308,310,309  

Structurally, all grainyhead proteins are remarkably similar, containing an 

evolutionarily conserved CP2 DNA binding domain flanked by an N-terminal 

transactivation domain and a C-terminal DNA binding domain. 311, 312 313 314 309 In fact, 

amino acid sequence comparison revealed that the human homologue of murine GRHL1 

to be 94% identical at the amino acid level. 315 Further, GRHL1 and GRHL2 share 90% 

sequence homology at the amino acid level, with much of the differences being within 

the N-terminal transactivation domain, linker regions, and the C-terminal dimerization 

domains. Wilanowski et al. found that while GRHLs 1 and 2 (and theoretically 3) 

function as homodimers, their activity is enhanced as heterodimers. Together, these data 

suggest that the GRHL family of proteins were derived from gene duplication events 

during evolution. 309 

The first studies in Drosophila demonstrated the essential role for GRH in 

development and specifically dorsal/ventral patterning and CNS development. 316-318 In 

mammalian systems, it appears that in mammals the pleotropic functions of GRH in 
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drosophila have been delegated amongst the three grainyhead-like proteins, though still 

central to functions within cells of epithelial origin. GRHL1 and GRHL2 have been 

shown to be essential regulators of cell-cell junctions. GRHL1 null mice exhibit 

palmoplanter keraderma, desomosomal abnormalities, skin barrier defects, and improper 

differentiation of keratinocytes. 319,320  Homozygous deletion of GRHL2 is embryonically 

lethal due to failure of neural tube closures. 321,322 321 However, autosomal recessive 

knockouts have also shown its importance in regulation of barrier function and 

keratinocyte differentiation. 319,323 While not embryonically lethal, GRHL3-null mice die 

at birth with defects in neural tube closure. Using adult specific GRHL3 knockout mice 

groups have shown the loss of GRHL3 severely impairs wound healing and skin barrier 

functions. 322 324,325 

Aside from knockout-based developmental studies, the majority of recent work 

into the function of the GRHL proteins has centered on their roles in cancer with complex 

and often conflicting results. Briefly, GRHL1 expression in neuroblastomas is associated 

with a favorable prognosis, reduced cellular proliferation, and increased xenograft growth 

in mice. 326 However, given its role in skin differentiation, GRHL1-null mice rapidly 

develop squamous cell carcinoma (SSC), through this is likely due to the lack of terminal 

differentiation at birth. 327 

Many more studies have explored the role of GRHL2 and particularly in breast 

cancer. Studies first characterized GRHL2 as a suppressor of EMT, where breast and 

colon cancer cells with increased expression exhibited reduced xenograft growth and 

expression of stem cell markers as well as increased chemosensitiviity. 328-330 
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Mechanistically, it was found that GRHL2 directly enhances E-cadherin expression while 

inhibiting ZEB1, a prominent driver of EMT. 320,331,332 However, it was also found that 

ZEB1, in response to β-catenin/TGF-β stimulation can directly repress GRHL2 indicating 

a reciprocal feedback loop. 328-331 While seemingly at odds, they are in line with the 

paradoxical effect of TGF-β in cancer progression. In the early stages TGF-β functions as 

a tumor suppressor, while in later stages it promotes growth, metastasis, and EMT. 328-330 

While these results are far from conclusive, it could be that GRHL2 expression and its 

effect on cancer is dependent on the stage of cellular differentiation.  

In addition to simple increases or decreases in expression, it has also been shown 

that GRHL undergoes alternative splicing events, dramatically changing their functional 

activity. First described in neuroblast cells in Drosophila, selective mutation of this 

isoform resulted in lethality and movement disorders, demonstrating its functional 

significance. Mechanistically, previous studies in drosophila revealed that the mutant 

protein preferentially forms heteromeric complexes with the full-length grainyhead, 

blocking the formation of grainyhead homodimers. These heteromeric complexes fail to 

activate gene expression despite the presence of one functional activation domain. 333 

This suggests that the ability of spliced of GRHL1 to homodimerise or heterodimerise 

with grainyhead family proteins may have similar functional consequences. In a seminal 

paper, Wilanowski et al discovered the presence of homologous alternatively spliced 

isoforms of mammalian GRHL proteins as well.  In their study, alignment of these 

proteins and mapping of the genomic locus revealed that the longer (p70 or full-length, 
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FL) isoform and the shorter (p49 or spliced, S) isoform contained similar core DNA-

binding and C-terminal dimerization domains but varied significantly at their N-termini (  
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Figure 5.1) Upon mapping the corresponding cDNAs to their genomic loci, they 

found that the first three coding exons corresponding to the conserved transactivation 

domain are exclusive to the FL isoform of GRHL1. Given that this region contained the 

conserved transactivation domain (TAD), they hypothesized that the spliced isoform may 

function in dominant-negative fashion similar to those found in drosophila. Indeed, 

ectopic expression of either the full-length and TAD alone in GRHL-naïve cells activated 

GRHL-responsive reporters while introduction of the spliced isoform nullified 

transcriptional activity. Further, in situ hybridization in mice and cDNA mapping of 

human tissue revealed that these GRHL1 isoforms exist in in a variety of tissues 

exhibiting independent expression. 309 

Since their discovery, there have been no reported studies characterizing the role of 

GRHL1 splicing in mammalian systems.  Recently however, Werner et al has 

demonstrated the presence and functional consequence of grainyhead-like 2 splicing in 

breast cancer. Similar to GRHL1, GRHL2 also undergoes splicing within its coding exon 

producing a N-terminal truncated protein. Interestingly, the cDNA revealed that splicing 

retained a large portion of the TAD. Due to the proximity of the start codon to the 5’ end 

of the transcript, an alternative, downstream translation start site is favored, creating the 

49 kDa spliced isoform. In their study, they found that ectopic expression of the spliced 

GRHL2 isoforms in breast cancer cell lines exerted a dominant negative effect on the 

tumor-suppressive function of endogenous GRHL2. However, as noted above, this effect 

is highly dependent on the breast cancer subtype tested. While the nuances of their work   



167 

 

Figure 5.1: Schematic representation of GRHL 1 &2 full length and spliced proteins 

Structurally, all grainyhead proteins are remarkably similar, containing an evolutionarily 

conserved CP2 DNA binding domain flanked by an N-terminal transactivation domain 

and a C-terminal DNA binding domain. The splice variants result in a truncated protein 

packing the N-terminal transactivation domain (TAD) found largely remain intact. 

Percentages indicate similarity between indicated domains between the spliced and the 

full length variants.  
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are beyond the scope of this report, suffice to say that the functional role of GRHL2 is 

nuanced and cell specific. 329  

In the liver, proteomic and immunohistochemistry screens of hepatic tissue have 

demonstrated that GRHL2 is restricted to the biliary epithelium, while GRHL1 is specific 

for hepatocytes in the normal liver. Furthermore, RNAseq data suggests that GRHL1 is 

expression is decreased 1.8-fold in a study of HCC tumor samples when compared to 

normal tissue. This decrease in GRHL1 is analogous to the 2-fold decrease in miR-122 

previously described in HCC tumor samples as well. Tanaka et al. found an association 

between a genome copy number gain of GRHL2 in tumor tissues of patients with 

recurrent HCC.334 However, it is key to note that these findings denoted increases of the 

GRHL2 genomic locus on chromosome 8, a frequent occurrence in HCC, and that 

increased copy number of GRHL2 has been shown not to translate into increased protein 

or mRNA. Furthermore, their work demonstrating that siRNA knockdown of GRHL2 

inhibits HCC tumor growth was performed in Huh-6 cells lines which lack GRHL2 

mRNA while harboring copy number gains of chromosome 8.334,335 While they went on 

to demonstrate that siRNA knockdown of GRHL2 inhibited HUH-6 (human HCC cell 

line) proliferation. However, more recent studies have shown that the HUH-6 cells used 

in this study, while having a copy number gain at the genomic locus for GRHL2, do not 

have any detectable GRHL2 transcript. The first study to define GRHL2’s function in the 

liver was done by Tanimizu, et al. They determined that GRHL2 downregulation was 

required for the development of mature hepatoblasts from neonatal cholangiocytes. 
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However, the significance of these findings or any insight into the role the grainyhead 

proteins in hepatic pathophysiology have never been described.  

Together, these studies led me to hypothesize that the loss of GRHL1, the 

predominant homolog in hepatocytes, is involved in maintaining miR-122 expression and 

its loss associated with an increase in GRHL2, due to alcohol, may epigenetically 

regulate miR-122 and ALD pathogenesis. 

Methods 

Procurement of Human Specimens 

Paraffin embedded blocks and flash frozen human liver tissue was obtained form 

healthy controls, alcoholic cirrhosis, and HCV cirrhosis, were obtained through the Liver 

Tissue Cell Distribution System, Minneapolis, Minnesota, which was funded by NIH 

Contract # N01-DK-7-0004/HHSN26700700004C.  

Animal Studies 

All animals received care in compliance with protocols approved by the 

Institutional Animal Use and Care Committee (IACUC) of the University of 

Massachusetts Medical School. Wild-type (WT) mice (C57/Bl6), Alb-Cre, and HIF-

1αflox/flox
 
mice were purchased from Jackson Laboratories (Bar Harbor, ME) and 

backcrossed onto a C57/Bl6 background. 6-8 week old mice were gradually acclimated to 

a Lieber-DeCarli liquid diet with 5% ethanol (vol/vol) over a period of 1 week, then 

maintained on the 5% diet for 4 weeks (total of 5 weeks). Consumption was recorded 

daily and isocaloric amounts of a control diet (in which dextran-maltose replaced calories 

from ethanol) were dispensed to pair-fed (PF) animals. Weights were recorded weekly. 
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At the conclusion of the 5-week feeding, mice were weighed, blood collected, and 

euthanized. Livers were dissected, weighed and divided into lipid nitrogen for protein and 

biochemical assays, fixed in 10% phosphate-buffered formalin for histological analysis, 

preserved in OCT frozen section preparation solution, or soaked in RNALater (Qiagen, 

Hilden, Germany, Hilden, Germany). Blood was allowed to clot and serum obtained 

using gel-based serum separator tubes.  

 

Isolation of primary mouse hepatocytes and LMNCs  

Anesthetized animals were perfused by way of portal vein with saline solution, 

followed by enzymatic digestion, as previously described.75 The hepatocytes were 

separated by centrifugation, Primary hepatocytes were cultured in low-glucose DMEM 

supplemented with 10% fetal bovine serum, 1% Anti-Anti, 1% gentamycin, 1% insulin, 

transferrin, selenium solution. Primary hepatocytes were seeded in 6-well collagen-

coated plates (Biocoat, Becton Dickinson). Before starting stimulation experiments, 

hepatocytes were rested for 4 hours.  

 

RNA extraction and real-time PCR 

Total RNA was extracted using the Quiagen miRNeasy kit (Qiagen, Hilden, 

Germany, Hilden, Germany) according to the manufacturer’s instructions. Briefly, tissue 

samples were lysed in QIAzol Lysis reagent (Qiagen, Hilden, Germany), homogenized 

with stainless steel beads in TissueLyser II (Qiagen, Hilden, Germany) followed by 

miRNA isolation following manufacturer’s instructions and DNase 1 Digest. RNA was 
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quantified using Nanodrop 2000 (Thermo Scientific, Waltham, MA). Complementary 

DNA (cDNA) synthesis was performed by reverse transcription of 1 ug total RNA using 

the iScript Reverse Transcription Supermix (Bio-rad, Hercules, CA). Real-time 

quantitative PCR was performed using Bio-Rad iTaq Universal SYBR Green Supermix 

and a CFX96 real-time detection system (Bio-Rad Laboratories). Primers were 

synthesized by IDT, Inc. The primer sequences are listed in chapter 1. Relative gene 

expression was calculated by the comparative cycle threshold (Ct) method. The 

expression level of target genes was normalized to the house-keeping gene, 18S rRNA, in 

each sample and the fold-change in the target gene expression between experimental 

groups was expressed as a ratio. Melt-curve analysis was used to confirm the authenticity 

of the PCR products. 

 

Pri-miRNA Analysis 

Reverse transcription was performed from total RNA as described above and 

diluted 5-fold. TaqMan primers and miRNA Reverse Transcription Kit (Applied 

Biosystems, Foster City, CA) followed by quantitative RT- in CFX96 (Bio-rad, Hercules, 

CA) using TaqMan Universal Probes Master Mix (Bio-rad, Hercules, CA). All samples 

were normalized to snoRNA202, or U6 expression based on Normfinder 

(http://moma.dk/normfinder-software) analysis of loading control stability. hsa-miR-122-

FAM, GAPDH-FAM, and mmu-miR-122-FAM primer sets were purchased from 

Applied Biosystems.  

Whole Cell Lysate  
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Approximately 50 mg of liver tissue was washed in ice cold PBS and 

homogenized in lysis buffer (9.5ml RIPA buffer, 1mM NaF, 2mM Na3VO4, 1 protease 

inhibitor tablet, 5mM PMSF) with stainless steel beads in TissueLyser II (Qiagen, 

Hilden, Germany, Hilden, Germany). After 10 minutes of incubation on ice, homogenates 

were centrifuged at 14,000xg for 10 minutes at 4 degrees C. The supernatant (clarified 

whole cell lysate) was collected and stored in aliquots at -80 degrees C.  

Western Blotting  

Approximately 10-20 ug of total liver lysate was resolved on 10% polyacrylamide 

gels and transferred overnight to nitrocellulose support. Membranes were blocked 

overnight with blocking buffer (5% bovine serum albumin in Tris-Borate-SDS with 

0.01% Tween 20) with refrigeration, and subsequently probed overnight with GRHL2 

(Atlas antibodies, HPA004898) and GRHL2 (Atlas antibodies, HPA004820) rabbit 

polyclonal antibodies. Detection was performed using an anti-rabbit horseradish-

peroxidase conjugated secondary antibody and chemiluminescent substrates. Band 

density was quantified using ImageJ64. 

Confocal microscopy – Immunofluorescence.   

Confocal images were processed as previously described. Primary hepatocytes 

were fixed, permeablized and stained O/N with either anti-GRHL2 (Atlas antibodies, 

HPA004820), or normal Rabbit IgG sc-2027 (Santa Cruz Biotechnology, Dallas, Texas). 

Actin was stained using ActinGreen 488 anti-ReadyProbes Reagent #R37110 (Molecular 

Probes, Eugene, OR). Secondary antibody used was anti-rabbit Alexa Fluor 594 #A-
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21207 (Molecular Probes, Eugene, OR). Images were acquired using Leica TCS SP5 II 

Laser Scanning Confocal Microscope.  

Immunohistochemistry 

Immunohistochemistry staining for GRHL2 (Atlas antibodies, HPA004898) and 

GRHL2 (Atlas antibodies, HPA004820) were performed on formalin-fixed, paraffin-

embedded livers according to the manufacturer’s instructions. ImageJ (NIH) was used for 

image analysis. 

Results 

Utilizing taqman probes specific for the miR-122 primary transcript (pri-miR-

122), I found that alcohol reduces pri-miR-122 expression approximately 2-fold in human 

alcoholic cirrhosis patients (Figure 5.2a) while there was no change in patients with HCV 

cirrhosis. Livers of alcohol-fed mice and specifically hepatocytes also showed a 

significant reduction in pri-miR-122 expression (Figure 5.2b) similar to the reduction of 

mature miR-122 (Figure 2.4). Furthermore, while I have demonstrated that restoration of 

the mature form of miR-122, and HIF-1α-null mice are protected from the phenotype of 

ALD, the inhibitory effect of alcohol on pri-miR-122 expression was still present (Figure 

5.2c,d). These findings led me to hypothesize that chronic alcohol specifically regulates 

miR-122 at the transcriptional level. 

The high baseline level of miR-122 in hepatocytes is maintained by many 

transcription factors including HNF4, and HNF6.185,187,236 However, none of these 

transcription factors showed changes in the livers of alcohol-fed mice compared to 

control mice that would result in reduced miR-122-transcription (  
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Figure 5.3a,b). Recent studies have identified grainyhead like-2 (GRHL2), a 

homolog of the drosophila grainyhead transcriptional regulator, as a potential repressor of 

miR-122  

expression in progenitor cells during hepatic differentiation. 307  However, the role the 

grainyhead proteins in hepatic pathophysiology is yet to be described. 

In silico analysis revealed a conserved grainyhead dimer binding site 

approximately 300 bps upstream of the miR-122 transcription start site (TSS), (Figure 

5.4a). First, I performed chromatin immunoprecipitation-qPCR (ChIP-qPCR) in HUH-7 

cells that confirmed the putative GRHL binding site in the miR-122 promoter (Figure 

5.4b).  

Immunohistochemistry (IHC) revealed that while GRHL1 staining is confined to 

hepatocytes, no clear change in staining was apparent (  
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Figure 5.5a). GRHL2 staining revealed its expression is restricted to the biliary 

epithelium in healthy controls and pair-fed mice, however, alcoholic cirrhosis patients 

and alcohol-fed mice had notably increased staining within hepatocytes (  
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Figure 5.5b). IHC for GRHL2 of FFPE and immunofluorescence also showed that 

alcohol-fed mice had increased GRHL2 staining within hepatocytes (  
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Figure 5.5, Figure 5.6a,b). Next, I sought to characterize the mRNA expression of 

GRHL1 and GRHL2 in alcoholic cirrhosis patients, and found a decrease in the full-

length GRHL1 (Figure 5.7a) and a significant increase in total GRHL2 (Figure 5.7b) 

mRNA when compared to healthy controls and HCV cirrhosis. Furthermore, this 18-fold 

increase in GRHL2 mRNA demonstrated a significant inverse correlation with miR-122 

expression in alcoholic human livers (Figure 5.7b, r2=0.6803, P<0.0001). Alcohol-fed 

mice showed a modest but statistically not significant increase in full length GRHL2 

expression (Figure 5.7c) and no change in either total or full length  

GRHL1 expression (Figure 5.7d). However, using primers specific for the spliced form, 

there appeared to be a trend towards an increase.  

Western blot from total liver lysates revealed that that while GRHL1-FL was 

decreased in alcoholic patients(Figure 5.8a), the expression of the GRHL2-FL was 

unchanged in either murine or human livers (Figure 5.8c). However, expression of the 

spliced variants of both of GRHL1 and 2, previously described in the literature as 

dominant-negative isoforms, were significantly increased in both alcohol-fed murine and 

human alcoholic cirrhosis livers (Figure 5.8a-d). These isoforms, are the result of 

alternative splicing events in exon 1 characteristic of the Grainyhead-family proteins 

which result in proteins containing the conserved C-terminal DNA binding and 

dimerization domains, but lacking N-terminal transactivation domain, thereby inhibiting 

transcriptional activity at its targeted binding sites (  
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Figure 5.1). Taken together, this led me to hypothesize that alcohol increases the 

spliced or “dominant-negative”, variants of GRHL1 and 2 in hepatocytes, allowing them 

to hetero-dimerize, and repress miR-122 expression.  
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Pri-miR-122 expression in (a) 

human livers (n=10-12), alcohol-

fed WT murine (b) livers (n=8-14) and hepatocytes (n=5). (c) Pri-miR-122 expression in 

HIF1hepKO hepatocytes from pair-fed and alcohol-fed treated with either Scr or miR-

122-TuD.(d) Pri-miR-122 expression in WT, PF or Et-fed hepatocytes treated with either 

Scr or or miR-122-OX. *P < 0.05, **P<0.005, ***P<0.0005 by Student’s t test (n=8-12). 

  

Figure	5.2:	Chronic	alcohol	inhibits	pri-miR-122.	
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Figure 5.3: Expression of HNF-4α and HNF6β in murine livers. 

Expression of (a) HNF4α, and (b) HNF6 in the livers of PF and Et-fed mice. *P < 0.05, 

**P<0.005, ***P<0.0005 by Student’s t test (n=8-14). 
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Figure 5.4: miR-122 promoter contains a conserved grainyhead binding site. 

Schematic representation of the GRHL1/2 binding site ~300 bp upstream of the TSS. (b) 

% input GRHL1 chromatin immunoprecipitation from HUH-7 cells.  
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Figure 5.5: Grainyhead-like 1 and 2 immunohistochemistry. 

Immunostaining for (a) GRHL1 and (b) GRHL2 in FFPE liver sections from healthy 

controls and alcoholic cirrhosis patients. GRHL2 histology in (a) murine and (b) human 

livers. (c) Immunostaining of FFPE liver sections from PF- and Et-fed mice. Scale bars; 

full-size=100 µm, inset=50 µm. 
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Figure 5.6: Chronic alcohol increases GRHL2 expression in murine hepatocytes. 

Immunofluorescence staining using anti-GRHL2 or normal rabbit IgG control antibody in 

primary murine hepatocytes isolated from alcohol and pair-fed mice. Scale bars; (a)7.5 

µm, (b)PF=25 µm, PF=10 µm, Et+IgG=25 µm. DAPI – Blue, GRHL2 – Red, Actin – 

Green.  
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Figure 5.7: Expression of grainyhead-like proteins in murine and human livers. 

mRNA expression of (a) GRHL1-FL and (b) Grhl2-total in the livers of patients with 

alcoholic cirrhosis, HCV cirrhosis, and healthy controls. (c) Pearson correlation between 

miR-122 expression and GRHL2 mRNA. (n=10-12) mRNA expression of murine (d) 

GRHL1-FL and spliced (S) isoforms and (e) Grhl-FL in the livers alcohol and pair-fed 

mice (n=6-14)..  *P < 0.05, **P<0.005, ***P<0.0005 by Student’s t test.  
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To examine the inhibitory effect of the spliced isoforms on miR-122, I cloned the 

promoter region of the human miR-122 gene into an empty PGL4 luciferase plasmid 

devoid of an enhancer or promoter. Furthermore, I mutated the putative GRHL binding 

site (Figure 5.4) and created a truncated promoter which contains the essential HNF 

binding sites but is 50 bp downstream of the GRHL site. I co-transfected each promoter 

construct with either GRHL1-FL, GRHL2-FL, or the GRHL2-S alone and in combination 

into HUH-7 cells which has the highest miR-122 expression of any hepatocyte cell 

line.182 Surprisingly, GRHL1, 2, and 2-S alone or in combination all inhibit miR-122 

promoter activity equally (Figure 5.9a). Furthermore, both the truncated and the reporter 

with the of mutated putative GRHL binding site not only enhanced baseline promoter 

activity and only blocked the inhibitory effect of GRHL1-FL, and not of either GRHL2 

isoforms ((Figure 5.9a). HUH-7 cells, while having high miR-122 expression, their levels 

are nearly 10-fold lower than primary human hepatocytes. Therefore, to confirm the 

abovementioned findings, I transfected either the GRHL1-FL, 2-FL or 2-S isoforms 

independently or in combination into primary human hepatocytes. 48-hours later, total 

RNA was collected and assayed for pri-miR-122 expression. Oddly, neither GRHL1, 

GRHL2-FL, or the GRHL2-S inhibited pri-miR-122, while the combination of GRHL1 

and GRHL2/GRHL2-S both enhanced expression (Figure 5.9b). Taken together these 

data suggests that alcohol regulates miR-122 expression by selectively increasing the 

spliced form of GRHL1 and 2 in hepatocytes. 
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Conclusions and Discussion 

These data indicate that the grainyhead family of transcription factors are 

essential in the regulation of miR-122 expression. I hypothesized that chronic alcohol 

increases GRHL2 expression within hepatocytes, inhibiting miR-122 transcription. As 

expected, GRHL2 expression was induced by chronic alcohol in humans and mice and 

inhibited miR-122 promoter activity in vitro. Surprisingly, I found that chronic alcohol 

induces alternative splicing of GRHL2 and GRHL1. Previous reports have shown that 

GRHL1 is constitutively expressed in hepatocytes while GRHL2 is predominantly in 

biliary cells.335 I too find that GRHL2 expression is restricted to the biliary epithelium in 

normal livers, while GRHL2 is expressed in hepatocytes in ALD in humans and mice 

upon exposure to chronic alcohol. However, in murine hepatocytes, IHC and 

immunofluorescence staining for GRHL2 revealed that while all hepatocytes exhibited 

significantly increased staining, this was largely localized perinuclear/cytoplasmic 

staining distribution, with only a few cells showing strong nuclear staining. This is 

puzzling given that the grainyhead proteins typically exhibit constitutive nuclear 

localization and no regulators of their nuclear translocation are known.   
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Figure 5.8: Chronic alcohol induces alternative splicing of GRHL1 and GRHL2. 

Representative immunoblot for GRHL1 from (a) human (n=5) and (b) murine 

(n=5) from total liver lysate. Representative immunoblot for GRHL2 from (c) human 

(n=5) and (e) murine (n=5) from total liver lysate. β-actin was used as a loading control. 

*P < 0.05, **P<0.005, ***P<0.0005 by Student’s t test.  
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Figure 5.9: Role of grainyhead isofroms on miR-122 expression. 

(a) Firefly luciferase activity driven by either a WT, Mut (mutated GRHL site, or 

truncated human miR-122 promoter in HUH7 cells. Each promoter was co-transfected 

with human cDNA clones of either the GRHL1-FL, GRHL2-FL, or GRHL2-S alone, or 

in combination. (b) expression of pri-miR-122 in primary human hepatocytes containing 

ectopically expressed either GRHL proteins as described above. Cells were incubated for 

48 hours, then harvested for luciferase assay (a) or total RNA extracted for qPCR 

analysis(b). M= Mock, G1= GRHL1-FL, G2=GRHL2-FL, G2-S=GRHL2-Spliced. 
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Interestingly, immunoblot from murine and human livers revealed that the 

increase in GRHL2 and GRHL1 corresponded to increases in their respective splice 

variants. In advanced alcoholic cirrhosis, there is switch in GRHL1 from its full-length to 

its spliced form. This appeared to support my initial hypothesis that GRHL1 activates 

miR-122 expression and that with alcohol, either the decrease in GRHL1 or the loss of its 

TAD would cause a decrease in miR-122. Consistent with previous reports and my 

hypothesis, GRHL2 significantly inhibited miR-122 promoter activity in vitro. Though it 

is key to mention that Tanimizu et al performed these miR-122 promoter assay s in 

human 293T cells using murine miR-122 promoter construct which in my hands 

exhibited little to no miR-122 promoter activity at baseline.307 Surprisingly, while 

hepatocytes have been shown to express GRHL1, the ectopic expression of GRHL1 in 

hepatocytes inhibited miR-122 promoter activity. Furthermore, removal of the putative 

consensus GRHL binding site within the miR-122 promoter enhanced baseline 

expression and removed the inhibitory effect of GRHL1 on miR-122 promoter activity. 

However, this had no effect on mitigating the inhibition due to either GRHL2 isoform. 

Furthermore, in primary human hepatocytes, it appears that neither GRHL1, nor either 

GRHL2 isoform independently effect pri-miR-122, but in combination with GRHL1, 

enhance pri-miR-122 expression.  

While I have included the data from the primary hepatocytes here, though 

experimental conditions may not have been optimal. Primary hepatocytes are known to 

rapidly de-differentiate ex vivo. I received these cells two days after their harvesting and 

the experiment was subsequently performed over the course of 60 hours, potentially 
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confounding these results. However, if the primary hepatocyte data are indeed 

representative of the effects of GRHL1 and GRHL2 on miR-122 in vivo, the disparity in 

the findings could be due to epigenetic factors such as methylation of the genomic locus 

which are frequently changed in many cancers as well as in alcohol which could affect 

GRHL2 binding. In general, alcohol leads to a hypomethylated state. This would be 

better represented in the in vitro experimental conditions using the cloned miR-122 

promoter, which by virtue of being an exogenous construct would escape methylation. 

Indeed, in these conditions I did observe a downregulation of miR-122 promoter activity 

by both GRHL1 and GRHL2. As confirmation, repeating this experiment in primary cells 

following the use of a chemical methylation inhibitor would be a prudent course of 

action. Additionally, in the case of the primary cells, I directly measured pri-miR-122 

levels while in the HUH-7 cells a luciferase reporter was used. Given that the pri-miR-

122 transcript is short-lived, and exhibits circadian oscillation, even in vitro, there may be 

diurnal variations in transcript that do not accurately reflect overall promoter activity.   

The data from HUH-7 suggests that mutation or removal of the conserved GRHL 

binding site only mitigates the effect of GRHL1 suggesting that the constitutive 

expression of GRHL1, which is naturally found in hepatocytes, exerts an inhibitory effect 

on miR-122 at baseline. Further, that mutation and truncation did not affect the role of 

GRHL2.  This suggests there may be additional binding sites more specific for GRHL2 

within the miR-122 promoter. Given that ectopic expression of GRHL2 alone and in 

combination with GRHL1 was able to inhibit promoter activity in the mutated and 

truncated promoters, it is reasonable to hypothesize that this second site is either GRHL1 
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independent, or at the very least, requires GRHL2 for binding. Indeed, in silico analysis 

determined an additional predicted heterodimer binding site ~50 bp downstream of the 

GRHL1 site within the miR-122 promoter. While this site is less favorable, in this 

synthetic system where ectopic protein expression is far greater than physiological levels, 

this site may still be activated. Further studies titrating the GRHL concentrations and 

mutation of this second site is warranted.  

It is also possible that the introduction of one or multiple versions of the GRHL 

proteins have an indirect effect on miR-122. For example, Tanimizu et al showed that 

overexpression of GRHL2 drove hepatic progenitor cells to a chonalgiocyte phenotype 

which is associated with a loss of many hepatocyte nuclear factors essential for driving 

miR-122 expression. 307 Though the exact effect of GRHL proteins on the HNF network 

is not known, the loss of these HNFs could also result in diminished promoter activity.  

Finally, a recent a study in drosophila keratinocytes has shown that GRH activity 

is regulated by ERK-dependent phosphorylation, but only in response to wound healing. 

In fact, its role during differentiation is independent of ERK and terminally differentiated 

keratinocytes exhibit “dormant” GRH constitutively present but inactive. Upon injury, 

ERK-mediated phosphorylation activates grainyhead – a required process for wound 

healing. 336 Homologous phosphorylation site have been predicted on the mammalian 

grainyheads proteins as well. In alcohol, the role of LPS-induced inflammation via TLR4, 

and MAPK/ERKs 1/2 in hepatocytes and immune cells is well characterized.94,337 

Therefore, one would hypothesize that alcohol may upregulate GRHL2 expression, 
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and/or splicing but in an inactive, or minimally active form. Upon ERK activation, 

GRHL is activity is increased, inhibiting miR-122 expression. While the in vitro system 

used in this study do not seem to require these modifications, as they inhibited miR-122 

promoter activity, forced overexpression of the grainyhead proteins may bypass these 

regulatory steps. Given the essential role of LPS/TLR4/MAPK in ALD, repeating these 

studies inflammatory mediators such as LPS or selective MAPK/ERK inhibitors would 

aid in elucidating their role.  

Overall, these results establish the role of GRHL1 and 2 is regulating miR-122 

expression in chronic alcohol. While many questions remain, further studies as outlined 

above, would aid in the understanding the role of the grainyhead proteins on hepatic 

biology and pathophysiology. 
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CHAPTER 6: FINAL SUMMARY, DISCUSSION, & FUTURE DIRECTIONS 

My work presented here demonstrates a role for miR-122 in the pathogenesis of 

alcoholic liver disease. the evidence to support this claim can be summarized as four 

particular areas. I first described that chronic alcohol inhibits miR-122 expression. 

Second, that this reduction of miR-122 directly increases its downstream target, HIF-1α, 

inducing steatosis, and augmenting alcohol-induced liver injury. Third, that restoration of 

miR-122 expression can reverse alcohol-associated pathologies in the liver. Finally, I 

supply evidence to suggest alcohol-induced dysregulation of grainyhead-like proteins 

mediates the inhibition of miR-122 (Figure 6.1).   

 

Alcohol, miR-122, and HIF-1α 

I found that hepatic miR-122 levels are 2-fold lower in hepatocytes of alcohol-fed 

mice and human alcoholic cirrhosis patients compared to controls and that this loss of 

miR-122 inversely correlates with its primary target, HIF-1α. Using an AAV8-anti-miR-

TuD system I show that in vivo inhibition of miR-122 increases HIF-1α, recapitulating 

the phenotype of ALD. Although the relationship between alcohol and HIF-1α has 

previously been described, I define a specific mechanism and pathophysiological role for 

its dysregulation via miR-122 in ALD. 75 The results presented here show that miR-122 

expression is an essential factor in maintaining hepatocyte homeostasis in alcohol by 

targeting HIF-1α. Through this mechanism, AAV8-mediated restoration of miR-122 

reduced hepatic injury via inhibiting HIF-1α after alcoholic stress indicating a role for its 

ability to reduce alcohol-associated steatosis, inflammation, and fibrosis.  
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Figure 6.1: Proposed model of findings 

The high level of miR-122 in hepatocytes constitutively inhibits HIF-1α. Exposure to 

chronic alcohol induces increased levels of the grainyhead-like 1 and 2 spliced isoforms. 

These then in turn, hetero, or homodimerize, and bind the miR-122 promoter, inhibiting 

miR-122 transcription. The loss of miR-122 relieves the inhibitory effect on HIF-1α 

which then accumulates within the hypoxic hepatocyte, driving ALD pathogenesis. The 

data in Chapter IV, suggests the presence of a GRHL1 site at -300 bp from the miR-122 

TSS that, in HUH7 cells, exert a persistent inhibitory role on miR-122 promoter activity. 
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The reduction of miR-122 in the liver with alcohol (miR-122-TuD+et), resulted in 

dramatic increases in hepatic injury, greater than treatment with either alone. As stated 

above, the inhibition of miR-122 resulted in a baseline increase in HIF-1α, steatosis, and 

hepatocyte injury. This is identical to the phenotype we previously observed using an in 

vivo degradation resistant form of HIF-1α in murine hepatocytes (HIF1dPA). These mice, 

which had a higher HIF-1α expression, (albeit due to protein, not mRNA, stabilization) in 

hepatocytes, developed steatosis and liver injury without the presence of alcohol. When 

given alcohol, HIF1dPA mice exhibited a synergistic phenotype similar to that seen in 

miR-122-TuD+Et, having greater liver injury than either treatment alone. This 

phenomenon may be due to the further reduction in miR-122 seen in TuD+Et mice when 

compared to TuD+PF mice. 

However, while the combination of TuD treatment alone reduced miR-122 levels 

approximately 85%, greater than the 50% due to alcohol, yet resulted in an approximately 

equivalent increases in HIF-1α expression. Furthermore, TuD+Et reduced miR-122 an 

additional 50% when compared to TuD-treatment alone. This was associated with only a 

minimal increase in HIF-1α expression and activity relative to the large loss of miR-122. 

Together, this suggests that that other mechanisms may be important in regulating HIF-

1α. Previous studies have found other miRNAs, specifically, miR-155, miR-424, and 

miR-107, which directly regulate HIF-1α. 338,339 Specifically in regards to ALD, the role 

miR-155 in HIF-1α regulation is intriguing. Our lab and others have shown that miR-155 

is increased in hepatic immune cells, and hepatocytes in response to alcohol, driving 

TNF-α expression. 340-342 It stands to reason that miR-155, and other miRNAs, may also 
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contribute to the regulation of HIF-1α as well. As my current analysis stands, I have not 

assessed expression changes and the relative contribution of these or other miRNAs, and 

therefore cannot exclude them as contributing to the regulation of HIF-1α in my model. 

To this effect, it would be pertinent to perform whole a transcriptome analyses, such as 

small RNAseq experiments, from hepatocytes of PF and Et-fed mice to explore other 

miRNAs which may be contributing to HIF-1α regulation 

How does HIF-α cause steatosis? 

One question that has been left unanswered the mechanism by which HIF-1α 

drives steatosis and liver injury. The association between hypoxia inducible factors and 

lipid accumulation has been described in a variety of tissues with conflicting results.  

By simultaneously knocking out VHL with either HIF-α or HIF-2α, Rankin et al 

have described dramatically more steatosis in mice with only HIF-2α (HIF1/VHL-null) 

when compared to HIF-1α mice (HIF2/VHL-null) suggesting that in fact, it is HIF-2 

which drives steatosis. 73 However, Kim et al, using selective HIF-1dPA and HIF-2dPA 

mice, found that HIF-2 plays a minor role in hepatic lipid accumulation, rather, they 

reported increased angiogenesis in HIF2dPA mice. 67 These reports are reconcilable when 

we examine the system used by Rankin et al. Their system relied on removal of VHL, 

which blocks degradation of all hypoxia inducible factors. While they selectively deleted 

HIF-1 and HIF-2, they failed to account for HIF-3α. If, as Kim et al described, HIF-2dPA 

mice drive angiogenesis rather than steatosis, then that would suggest that the profound 

steatosis noted by Rankin et al. in their combination HIF-1/VHL knockouts was due to 

HIF-3α. 67,73 Interestingly, it has been shown that HIF-3α is inducible by HIF-1α. 343 If 
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we extrapolate these findings to the studies presented in this dissertation; where the 

combination of  miR-122 knockdown and alcohol synergistically increased HIF-1α, the 

disproportionate increase in overall liver injury could be due to the involvement of HIF-

3α.  

It is also key to mention work by Nishiyama et al, which stands in stark contrast 

to the findings in our lab. Using a similar Liber DeCarli chronic alcohol model and 

hepatocyte-specific knockout mice, they show that the up regulation of HIF-1α is 

protective in ALD. Specifically, they show that the loss of HIF-1α results in 

triglyceridemia and an up regulation of SREBP1c, a key regulator in alcohol-induced 

steatosis. Mechanistically, their they claim that in WT mice, the up regulation of HIF-1α 

due to alcohol induces the hypoxia-responsive gene DEC1, which in turn, reduces 

SREBP1c expression. Therefore, in HIFhepKO mice DEC1 is not induced causing 

worsening liver injury.76 However, while not in the liver, a study in cardiomyocytes 

expressing the HIF1dPA allele were shown to have increased lipid accumulation and 

suppressed PPARα, and enhancing PPARγ. 70 While a direct link has not been established 

for PPARα and hypoxia inducible factors, Krishnan et al has shown that that the PPARγ 

promoter contains a conserved hypoxia responsive element ~1Kb upstream of the TSS, 

within its promoter region and furthermore, mice homozygous for HIF1dPA allele 

exhibited enhanced PPARγ expression and FA uptake .71 Finally, in NAFLD,  PPAR-γ 

has been shown to directly enhance SREBP-1c transcription via binding to a PPRE 

within the SREBP-1c promoter. 48 This would suggest that the loss of miR-122 allows for 
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an accumulation HIF-1α which then directly increases PPARγ transcription, which in 

turn drives SREBP1c and hepatic steatosis.  

miR-122 in the liver 

While this is the first report to show alcohol-induced reduction in miR-122, many 

previous studies that have explored the metabolic effect of miR-122 inhibition with 

contradictory results. The first study published by Esau et al. who utilized anti-miR-122 

anti-sense-oligonucleotide (ASO) to knockdown miR-122 in the liver in a high fat diet 

(HFD) model. 344 In their report, Esau et a found that inhibition of miR-122 in the liver 

reduced steatosis in HFD-fed mice. These findings, are in sharp contrast to work by Hsu, 

et al.  whose liver-specific knockouts of miR-122-/- (122-/-LKO) developed spontaneous 

steatosis, fibrosis, and increased susceptibility to myc-induced HCC. 238 While the work I 

have presented in this dissertation supports their findings that the loss of miR-122 itself 

induces liver injury however, the  use of knockouts confounds their results. miR-122, via 

CUTL1, is required for terminal hepatocyte differentiation as well as for coordination 

through positive feedback looks with many essential HNF transcription factors. 185,345,346 

Therefore, it is difficult to extrapolate their findings to adult onset or acquired disease 

states.  

Therapeutic inhibition of miR-122 using Miravirsen or SPC3649, a Locked 

Nucleic Acid (LNA) anti-miR-122 oligo, was developed to treat HCV infection. 123,124,233 

It has been shown that miR-122 is an essential host factor for HCV replication and 

represents a therapeutic target in HCV infection. 124,199,223,347 Recently completed phase 

2a trials using Miravirsen to treat HCV infection yielded reduced HCV viral load at low 
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therapeutic concentrations, with no adverse events. 223,233 Additionally, these groups and 

others have demonstrated a cardio-protective role for miR-122 inhibition, via reduction of 

cholesterol and serum triglycerides. AAV-, ASO-, and LNA-mediated inhibition of miR-

122 have all demonstrated a decrease in serum cholesterol and triglycerides without 

hepatotoxicity. 221,223,233 While this is not in line with the findings I have presented here 

where the knockdown of miR-122 alone induced liver injury, a significant difference 

between my work and that of the above-mentioned studies are the difference in diets. In 

order to achieve a robust phenotype in our murine models of alcoholic liver disease, both 

control and alcohol-treated mice a calorie dense diet rich in fats and simple sugars. This 

added caloric stimulus may be the tipping point between anti-miR-122 therapy being 

cardioprotective or hepatotoxic. Additionally, caution is warranted as miravirsen, an anti-

HCV therapy enters phase 3 trials, as sustained inhibition of miR-122 may result in 

progressive liver injury, and a potential complication of chronic miR-122 inhibitor 

therapies.222,233  

miR-122 therapy in ALD 

In chapter IV, I utilized a rAAV8 vector to overexpress miR-122 in the livers of 

alcohol-fed mice. Through inhibition of HIF-1α, I was able to reverse steatosis, 

inflammation, and overall liver injury due to alcohol these results show that of miR-122 

expression is a key component in HIF-1α regulation and hepatocyte homeostasis. 

When first introduced, the use of viral vector gene therapy was fraught with 

skepticism and questions of safety. However, recent clinical trials in the UK using 

rAAV8 vectors to treat Hemophilia B deficiency has demonstrated that a single 
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peripheral-vein dose can safely and effectively achieve sustained transgene expression for 

16 months after treatment.264 This single dose approach provides an added benefit in 

treating patients with ALD who are frequently lost to follow-up compared to other 

miRNA therapies that require monthly dosing.111 Of note, in mice treated with rAAV8 

miR-122-OX, the degree to which we restored miR-122 was greater than anticipated; 

however, there was minimal hepatotoxicity as a result. Given that 130,000 copies of miR-

122 are in each hepatocyte, treatments that over-express miR-122 may have a large 

therapeutic window.182 However, long term studies at varying concentrations would be 

prudent in elucidating potential toxicities and off-target effects of sustained expression. 

The use of AAV systems once would preclude that patient from receiving 

additional doses due to seropositivity to the vector should the need an additional dose. 

Furthermore, in my data I noted that pair-fed hepatocytes did not achieve robust 

overexpression of miR-122 while alcohol-fed hepatocytes did. Though unlikely, this may 

be due to the observation by some of exportin 5 saturation when using U6-pol III based 

promoters causing cellular toxicity, and loss of the transgene. The use of less active and 

more selective promoters may mitigate the unwanted toxicity while retaining 

effectiveness. It is clear that further studies in mice as well as larger mammals must be 

conducted to ensure the low level of toxicity holds true.   

In these studies, I utilized scrambled sequences as controls for the TuD or miRNA 

overexpression constructs. These sequences were screened in silico against the mouse 

transcriptome to ensure that it did not target any known transcript. While unlikely, this 

does not preclude the possibility of an off-target effect by the AAV8 vector or the 
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scrambled construct via interference with an unanticipated transcript in these studies or 

future work. Therefore, it would be prudent to perform RNAseq analysis of livers from 

AAV8-scrambled, AAV8-empty vector, and PBS treated animals to be monitored for 

changes in RNA expression patterns due to the control constructs.  

While delivery of miRNA mimics is burdened with difficulty, recent advances in 

liposomal delivery systems may provide an effective delivery strategy to the liver. 

Alternatively, recent development of GalNac-conjugated ASOs which achieve surprising 

potency and specificity to the liver following sub cutaneous administration, may 

represent an alternative strategy which allows for titration of dose and ease of delivery. It 

is important to note though that studies using GalNac-conjugated nucleic acid molecules 

have only been shown with using siRNAs, not longer miRNAs. 255 While this technology 

holds much promise it remains to be seen if it can be used for miRNA therapeutics.  

Grainyhead proteins  

In Chapter V, by measuring pri-miR-122 expression, I demonstrated that chronic 

alcohol inhibits miR-122 at the transcriptional level, in patients with alcoholic cirrhosis 

and alcohol-fed mice. This suggested that miR-122 was transcriptionally repressed. 

Furthermore, this decrease in miR-122 was associated with an increased mRNA 

expression of grainyhead-like 2, a recently described transcription factor shown to inhibit 

the miR-122 promoter. IHC studies corroborated the increase in GRHL2 staining within 

hepatocytes. Additionally, western blots demonstrated that the increase associated with 

chronic alcohol of GRHL2 was that of its spliced form which does not contain a 

transactivation domain. Indeed, examination of GRHL1 which is traditionally found 
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within hepatocytes, by the same measures, revealed similar patterns of alternative 

splicing. However, in vitro studies into the role of these full length and spliced forms 

yielded conflicting results. As I have extensively discussed the results of these work in 

the discussion section of chapter V, I will focus here on the potential implications of 

grainyhead on hepatic pathophysiology.  

The exact role of GRHL2 in cancer is far from clear. However, if we accept its 

role in inhibition of miR-122, an interesting association arises. Tanimizu et al, noted that 

the gain of GRHL2 represented differentiation of hepatic progenitor cells to a 

cholangiocyte phenotype. 307 Furthermore, studies that revealed that HNF6 was a positive 

regulator of miR-122, found that overexpression of HFN6 resulted in irregular biliary cell 

morphology and hepatic tissue architecture. 189 The first studies to report increased tumor 

burden in miR-122 knockout mice using a DEN model, also noted increased biliary cyst 

formation, a precursor lesion to HCC. Our lab and others have also shown this process is 

accelerated by alcohol. 341 Furthermore, many studies have demonstrated the inverse 

correlation between miR-122 and HCC initiation, metastasis, and mortality. Therefore, if 

we consider the totality of these findings, this could suggest that the interplay between 

alcohol, GRHL2, and miR-122 regulate hepatocyte plasticity and possibly hepatic 

tumorigenesis. Little is known about the full-length or spliced isoforms of GRHL2, and 

their biological significance in hepatic pathology. Given that alcohol is the single greatest 

risk factor for HCC development, our data suggests that the alcohol-induced increase in 

GRHL2 in mature hepatocytes not only inhibits miR-122 and drives ALD pathogenesis, 

but it may represent an early epigenetic alteration promoting neoplastic changes in the 
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liver.  

In these studies, we utilized scrambled oligos as controls for the TuD or miRNA 

overexpression constructs. These sequences were screened in silico against the mouse 

transcriptome to ensure that it did not target any known transcript. While unlikely, this 

does not preclude the possibility of an off-target effect by the AAV8 vector or the 

scrambled construct via interference with an unanticipated transcript. Therefore, it would 

be prudent to perform RNAseq analysis of livers from AAV8-scrambled, AAV8-empty 

vector, and PBS treated mice to be analyzed for changes in RNA expression patterns due 

to the control constructs.  

 

Concluding remarks 

The treatment of alcoholic liver disease is a complex process involving reversal of 

parenchymal cell injury and suppression of inflammation. After 40 years of clinical trials, 

steroids remain the controversial standard of care, with no FDA-approved treatment 

available. 10 Recent clinical trials studying phosphodiesterase inhibitor (pentoxifylline) 

and anti-TNF agent (infliximab) treatments to target key inflammatory mediators in ALD 

have proven ineffective compared to placebo or failed due to the need for repeated dosing 

and constant monitoring for increased susceptibility to opportunistic infections. This is of 

particular concern in the ALD patient population which is often lost to follow-up. 

10,12,274,296 Furthermore, these trials have demonstrated that a reduction in inflammation 

without correction of parenchymal cell dysfunction is not sufficient in abating ALD 

pathogenesis in humans. 
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Based on our results, I speculate that GRHL2 may serve as a prognostic marker of 

hepatocyte differentiation or disease progression and that in vivo therapeutic correction 

of GRHL2 splicing or expression changes in ALD may be beneficial to correct miR-122 

dysregulation. However, until the role GRHL2 in liver disease is explored further, I 

propose, that downstream intervention with miR-122 restoration to treat alcoholic liver 

disease may constitute a safer, simpler, and more effective approach.  

miR-122 restoration has been considered as an HCC therapy, where its loss has 

been reported. 16,216,244,275 However, treatment at such a late stage of the ALD is difficult 

and gene therapy is often precluded due to tumor size. 238 Our data supports a potential 

novel treatment indication for miR-122 restoration, through regulation of HIF-1α, as a 

therapy in early alcoholic liver disease to prevent and reverse hepatic injury that warrants 

further exploration in the clinical setting. 
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