May 20th, 12:30 PM

Structural Activity Relationship Study on Dual PLK1 /BRD4 Inhibitor, BI-2536

Hailemichael Yosief
University of Massachusetts Boston

Shuai Liu
University of Massachusetts Boston

Dennis L. Buckley
Dana-Farber Cancer Institute

See next page for additional authors

Follow this and additional works at: https://escholarship.umassmed.edu/cts_retreat

Part of the [Biochemistry Commons](https://escholarship.umassmed.edu/cts_retreat), [Cancer Biology Commons](https://escholarship.umassmed.edu/cts_retreat), [Medicinal Chemistry and Pharmaceutics Commons](https://escholarship.umassmed.edu/cts_retreat), and the [Medicinal-Pharmaceutical Chemistry Commons](https://escholarship.umassmed.edu/cts_retreat)

Yosief, Hailemichael; Liu, Shuai; Buckley, Dennis L.; Roberts, Justin M.; Muthengi, Alex M.; Corsini, Francesca M.; Bradner, James E.; and Zhang, Wei, "Structural Activity Relationship Study on Dual PLK1 /BRD4 Inhibitor, BI-2536" (2016). *UMass Center for Clinical and Translational Science Research Retreat*. 97.

https://escholarship.umassmed.edu/cts_retreat/2016/posters/97

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in UMass Center for Clinical and Translational Science Research Retreat by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
Presenter Information
Hailemichael Yosief, Shuai Liu, Dennis L. Buckley, Justin M. Roberts, Alex M. Muthengi, Francesca M. Corsini, James E. Bradner, and Wei Zhang

Keywords
cancer drugs, PLK1 inhibitors, BI-2536

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.
Structural Activity Relationship Study on Dual PLK1 /BRD4 Inhibitor, BI-2536

Hailemichael Yosief¹; Shuai Liu¹, Dennis L Buckley², Justin M Roberts², Alex M Muthengi¹
Francesca M Corsinii, Bradner E James² and Wei Zhang¹

¹Department of Chemistry, UMass Boston, Boston, Massachusetts
²Department of Medical Oncology, Dana- Farber Cancer Institute, Boston, Massachusetts

Polo-like kinase 1 (PLK1) and BRD4 are two different therapeutic targets in cancer drug discovery. Recently it has been reported that PLK1 inhibitor, BI-2536, is also a potent inhibitor of BRD4. The simultaneous inhibition of PLK1 and BRD4 by a single drug molecule is interesting because this could lead to the development of effective therapeutic strategy for different types of disease conditions in which PLK1 and BRD4 are implicated. Structural activity relationship studies has been carried out on BI-2536 to generate analogs with enhanced dual inhibitory activity against BRD4 and PLK1 as well as to render the molecule selective to one target over the other. UMB101 and 160 have been found to exhibit enhanced dual inhibitory activity with selectivity fold of less than 30, UMB160 being the most potent dual-kinase bromodomain inhibitor (BRD4 IC₅₀ = 28 nM, PLK1 IC₅₀ = 40 nM). UMB131 was found to be the most selective PLK1 inhibitor over BRD4.

Contact information

Hailemichael Yosief

Email: hailemich@gmail.com

Phone: 513-746-5717