May 20th, 12:30 PM

Pre-exposure prophylaxis with OspA-specific human monoclonal antibodies protects mice against tick transmission of Lyme disease spirochetes

Yang Wang
University of Massachusetts Medical School

Aurélie Kern
Tufts University

Naomi Boatright
University of Massachusetts Medical School

See next page for additional authors

Follow this and additional works at: https://escholarship.umassmed.edu/cts_retreat

Part of the [Bacterial Infections and Mycoses Commons](https://escholarship.umassmed.edu/bacterial_infections_and_mycoses_commons), [Immunoprophylaxis and Therapy Commons](https://escholarship.umassmed.edu/immunoprophylaxis_and_therapy_commons), and the [Public Health Commons](https://escholarship.umassmed.edu/public_health_commons)

Wang, Yang; Kern, Aurélie; Boatright, Naomi; Schiller, Zachary; Sadowski, Andrew; Ejemel, Monir; Souders, Colby A.; Reimann, Keith A.; Hu, Linden; and Thomas, William D., "Pre-exposure prophylaxis with OspA-specific human monoclonal antibodies protects mice against tick transmission of Lyme disease spirochetes" (2016). *UMass Center for Clinical and Translational Science Research Retreat*. 91.

https://escholarship.umassmed.edu/cts_retreat/2016/posters/91

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in UMass Center for Clinical and Translational Science Research Retreat by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
Presenter Information
Yang Wang, Aurélie Kern, Naomi Boatriight, Zachary Schiller, Andrew Sadowski, Monir Ejemel, Colby A. Souders, Keith A. Reimann, Linden Hu, and William D. Thomas

Keywords
lyme disease, outer surface protein A, borrelia

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.
Pre-exposure prophylaxis with OspA-specific human monoclonal antibodies protects mice against tick transmission of Lyme disease spirochetes

Yang Wang, MD PhD1, Aurélie Kern, PhD2, Naomi K. Boatright, BS1, Zachary Schiller, BS1, Andrew Sadowski, BS1, Monir Ejemel, BS1, Colby A. Souders, PhD1, Keith A. Reimann, DVM1, Linden Hu, MD2, William D. Thomas, Jr., PhD1, Mark S. Klempner, MD1*

1MassBiologics, University of Massachusetts Medical School, Boston, Massachusetts, USA
2Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
*Corresponding Author: Mark.Klempner@umassmed.edu

Background. Tick transmission of *Borrelia* spirochetes to humans results in significant morbidity from Lyme disease worldwide. Serum concentrations of antibodies against outer surface protein A (OspA) were shown to correlate with protection from infection with *Borrelia burgdorferi*, the primary cause of Lyme disease in the United States.

Methods. Mice transgenic for human immunoglobulin genes were immunized with OspA protein of *B. burgdorferi* to generate human monoclonal antibodies (HuMabs) against OspA. HuMabs were generated and tested in *in vitro* borreliacidal assays and animal protection assays.

Results. Nearly 100 unique OspA specific HuMabs were generated and four HuMabs (221-7, 857-2, 319-44, and 212-55) were selected as lead candidates based on borreliacidal activity. HuMab 319-44, 857-2 and 212-55 were borreliacidal against one or two *Borrelia* genospecies, whereas 221-7 was borreliacidal (IC50 <1nM) against *B. burgdorferi, B. afzelii* and *B. garinii*, the three main genospecies endemic in the US, Europe and Asia. All four HuMabs completely protected mice from infection at 10 mg/kg in a murine model of tick-mediated transmission of *B. burgdorferi*.

Conclusions. Our study indicates that OspA-specific HuMabs can prevent the transmission of *Borrelia* and administration of these antibodies could be employed as pre-exposure prophylaxis for Lyme disease.