May 20th, 12:30 PM

5-Hyroxymethylcytosine Immunohistochemical Staining Correlates with Overall Survival in Patients with Chronic Myelomonocytic Leukemia

William Selove
University of Massachusetts Medical School

Karen A. Dresser
University of Massachusetts Medical School

Benjamin Chen
University of Massachusetts Medical School

Follow this and additional works at: https://escholarship.umassmed.edu/cts_retreat

Part of the [Neoplasms Commons](https://escholarship.umassmed.edu/cts_retreat/2016/posters/76), and the [Pathology Commons](https://escholarship.umassmed.edu/cts_retreat/2016/posters/76)

This work is licensed under a [Creative Commons Attribution-Noncommercial-Share Alike 3.0 License](https://escholarship.umassmed.edu/cts_retreat/2016/posters/76).

Selove, William; Dresser, Karen A.; and Chen, Benjamin, "5-Hyroxymethylcytosine Immunohistochemical Staining Correlates with Overall Survival in Patients with Chronic Myelomonocytic Leukemia" (2016). *UMass Center for Clinical and Translational Science Research Retreat*. 76.

https://escholarship.umassmed.edu/cts_retreat/2016/posters/76

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in UMass Center for Clinical and Translational Science Research Retreat by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
5-Hydroxymethylcytosine Immunohistochemical Staining Correlates with Overall Survival in Patients with Chronic Myelomonocytic Leukemia

William Selove, MD, Karen Dresser BS, HT(ASCP), Benjamin J. Chen MD, PhD
UMass Medical School, Dept of Pathology, Worcester, MA

Introduction

Chronic myelomonocytic leukemia (CMML) is a myelodysplastic/myeloproliferative neoplasm that has been associated with a number of genetic mutations, most commonly TET2 mutations in up to 50-60% of cases. Mutations in epigenetic genes such as TET2 are known to disrupt the conversion of 5-methylcytosine to 5-hydroxymethylcytosine (5hmC), contributing to oncogenesis. We hypothesized that CMML cases would exhibit decreased 5hmC expression, reflecting the propensity for TET2 mutations in CMML. We also sought to determine whether 5hmC IHC status reflected disease severity in terms of progression to AML and overall patient survival.

Methods

Thirty-five cases of CMML from between 1/2006 and 12/2014 were identified from the pathology archives at UMass, under an IRB-approved protocol. IHC was performed on FFPE bone marrow biopsy specimens with an anti-5hmC antibody. Staining was scored based on intensity of nuclear staining: 0 (neg) to 3+ (strong); and proportion of cells staining: 0 (<1%), 1 (1-25%), 2 (26-50%), 3 (51-75%), 4 (>76%). A combined product score was calculated yielding scores of 0-12. Correlation to clinical parameters (age, blast count, progression to AML, and overall patient survival) was investigated.

Results

60% (21/35) of CMML cases showed low expression of 5hmC (combined score <=4). This loss of 5hmC expression correlated significantly with poorer overall survival in Kaplan-Meier curves (p=0.0287). There was no significant correlation between 5hmC score and patient age, blast count, or AML progression.

Conclusion

IHC detection of 5hmC in CMML is significantly correlated with patient overall survival and could potentially be utilized as a prognostic biomarker. Loss of 5hmC expression likely reflects mutations to epigenetic pathways and could be useful in guiding treatment with hypomethylating agents.

William Selove
William.selove@umassmemorial.org
Ph)571-356-3878
Pager 8390