May 20th, 11:15 AM

The Challenge of Maintaining our Physician-Scientist Workforce

Terence R. Flotte
University of Massachusetts Medical School

Follow this and additional works at: https://escholarship.umassmed.edu/cts_retreat

Part of the Translational Medical Research Commons

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.
The Challenge of Maintaining our Physician-Scientist Workforce

Terry Flotte, MD
Provost and Dean
UMMS
Disclosure

- I have no actual or potential conflict of interest in relation to this program/presentation.
Projected Total Physician Shortfall, 2014–2025

Source: IHS Inc. April 2016
Value of Physician-Scientists

• Bridge worlds of science and medicine, bringing questions and observations to the “lab” and translating discovery to practice

• Disproportionally represented in leadership positions

• Illustrate justification of funding research for the public
“…no distinction can be made between research and practice. The investigator, obviously, observes, experiments, and judges; so do the physician and surgeon who practice their art in the modern spirit. At bottom the intellectual attitude and processes of the two are—or should be—identical...”
Challenges and Rewards

- Lengthy training
- Delayed gratification
- Reduced income potential
- Competing demands on time
- Competition with research faculty for grants
- Competition with clinical faculty for productivity
- Temptation to over-commit

- Broad view of relevance of their work
- Satisfaction (albeit delayed) of seeing impact
- Enhanced rate of advancement to leadership
- Admiration of colleagues
NIH Appropriations in Current and Constant Dollars

Source: NIH Office of the Director, Office of Budget: http://officeofbudget.od.nih.gov/
Extramural Research Awards at UMMS:
Fiscal Years 2006 - 2016

All UMMS Funding minus ARRA

All UMMS Research Funding

(Projected)
Research Project Grants
Competing applications, awards, and success rates
Chart 13-14-1. Average Age and Degree Type of First-Time Investigators on R01-Equivalent Grants* (Fiscal Years 1980-2013)**

*The definition of first time investigator has changed over time, and the annual numbers in the chart reflect the first time investigator policies that were in place during those years. R01 Equivalents include activity codes R01, R23, R29, and R37, and beginning in 2008 included DP2 awards to first-time NIH investigators. Not all these activities are in use by NIH every year.

**Excludes American Reinvestment and Recovery Act Awards (ARRA).
<table>
<thead>
<tr>
<th>Type of Classification</th>
<th>Number of Awardees</th>
<th>Average Age</th>
<th>Median Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early Stage Investigators<sup>2</sup></td>
<td>785</td>
<td>39.2</td>
<td>39</td>
</tr>
<tr>
<td>Targeted New Scientist Programs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outstanding New Environmental Scientist (ONES) in 2011<sup>1a</sup></td>
<td><11</td>
<td>36.9</td>
<td>37</td>
</tr>
<tr>
<td>Biobehavioral Research Award for Innovative New Scientist (BRAINS)<sup>1b</sup></td>
<td><11</td>
<td>36.4</td>
<td>36</td>
</tr>
<tr>
<td>NIH Director's New Innovator Award Program<sup>1c</sup></td>
<td>45</td>
<td>37.4</td>
<td>37</td>
</tr>
<tr>
<td>NIH Pathway to Independence Award (R00)<sup>3</sup></td>
<td>153</td>
<td>36.2</td>
<td>36</td>
</tr>
<tr>
<td>NIH Director's Early Independence Awards<sup>1d</sup></td>
<td>14</td>
<td>32.1</td>
<td>32</td>
</tr>
</tbody>
</table>
Research Career Development Awards
(all K awards)
Research Career Development Awards
Total funding and average size
Individual Research Career Development Awards
Number of entry-level awards
Institutional Research Career Development Awards
Number of entry-level appointments

![Graph showing the number of K12 and KL2 appointments from 2006 to 2013.](image)
<table>
<thead>
<tr>
<th>KL2 Scholar</th>
<th>Award Date</th>
<th># Successful Grant Proposals</th>
<th>Total Amount</th>
<th># Journal Publications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Olga Hardy Gupta, MD*</td>
<td>2007</td>
<td>1</td>
<td>$160,305</td>
<td>20</td>
</tr>
<tr>
<td>Wendy K. Marsh, MD, MS</td>
<td>2008</td>
<td>1</td>
<td>$75,000</td>
<td>25</td>
</tr>
<tr>
<td>Jeffrey Bailey, MD, PhD</td>
<td>2009</td>
<td>4</td>
<td>$22,454,338</td>
<td>18</td>
</tr>
<tr>
<td>Sarah L. Cutrona, MD, MPH</td>
<td>2010</td>
<td>9</td>
<td>$2,534,760</td>
<td>22</td>
</tr>
<tr>
<td>Heena P. Santry, MD</td>
<td>2010</td>
<td>2</td>
<td>$2,300,000</td>
<td>27</td>
</tr>
<tr>
<td>David D. McManus, MD</td>
<td>2012</td>
<td>5</td>
<td>$3,188,612</td>
<td>74</td>
</tr>
<tr>
<td>Nancy Byatt, DO, MD, FAPM</td>
<td>2013</td>
<td>5</td>
<td>$4,479,736</td>
<td>20</td>
</tr>
<tr>
<td>Molly E. Waring, PhD</td>
<td>2013</td>
<td>1</td>
<td>$6,000</td>
<td>41</td>
</tr>
<tr>
<td>Melissa Anderson, PhD</td>
<td>2014</td>
<td>2</td>
<td>$300,314</td>
<td>4</td>
</tr>
<tr>
<td>Stephanie Carreiro, MD</td>
<td>2016</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mara Epstein, ScD</td>
<td>2016</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTALS</td>
<td>30</td>
<td>30</td>
<td>$35,499,065</td>
<td>251</td>
</tr>
</tbody>
</table>

* Recruited to UTSW as endowed “Dedman Family Scholar in Clinical Care” in 2012
Summary

• Value of Physician-scientists remains central to mission of academic medicine

• Challenges have stabilized but require ongoing affirmative efforts

• Specific purposeful mechanisms must be developed to ensure ongoing viability of physician-scientist role