May 20th, 12:30 PM

Sustained Expression with Partial Correction of Neutrophil Defects 5 Years After Intramuscular rAAV1 Gene Therapy for Alpha-1 Antitrypsin Deficiency

Terence R. Flotte  
*University of Massachusetts Medical School*

Christian Mueller  
*University of Massachusetts Medical School*

Gwladys Gernoux  
*University of Massachusetts Medical School*

See next page for additional authors

Follow this and additional works at: [https://escholarship.umassmed.edu/cts_retreat](https://escholarship.umassmed.edu/cts_retreat)

Part of the [Congenital, Hereditary, and Neonatal Diseases and Abnormalities Commons](https://escholarship.umassmed.edu/collections/congenital扫黑除恶), [Genetic Processes Commons](https://escholarship.umassmed.edu/collections/genetic扫黑除恶), [Genetics and Genomics Commons](https://escholarship.umassmed.edu/collections/genetics扫黑除恶), [Respiratory Tract Diseases Commons](https://escholarship.umassmed.edu/collections/respiratory扫黑除恶), and the [Therapeutics Commons](https://escholarship.umassmed.edu/collections/therapeutics扫黑除魔)

Flotte, Terence R.; Mueller, Christian; Gernoux, Gwladys; Gruntman, Alisha; Chulay, Jeffrey D.; Knop, David R.; McElvaney, Noel G.; Campbell-Thompson, Martha; and Wilson, James M., “Sustained Expression with Partial Correction of Neutrophil Defects 5 Years After Intramuscular rAAV1 Gene Therapy for Alpha-1 Antitrypsin Deficiency” (2016). *UMass Center for Clinical and Translational Science Research Retreat*. 30.  
[https://escholarship.umassmed.edu/cts_retreat/2016/posters/30](https://escholarship.umassmed.edu/cts_retreat/2016/posters/30)

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in UMass Center for Clinical and Translational Science Research Retreat by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
Presenter Information
Terence R. Flotte, Christian Mueller, Gwladys Gernoux, Alisha Gruntman, Jeffrey D. Chulay, David R. Knop, Noel G. McElvaney, Martha Campbell-Thompson, and James M. Wilson

Keywords
Alpha-one antitrypsin deficiency, adeno-associated virus, genetic disorder, emphysema

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

This poster abstract is available at eScholarship@UMMS: https://escholarship.umassmed.edu/cts_retreat/2016/posters/30
SUSTAINED EXPRESSION WITH PARTIAL CORRECTION OF NEUTROPHIL DEFECTS 5 YEARS AFTER INTRAMUSCULAR rAAV1 GENE THERAPY FOR ALPHA-1 ANTITRYPSIN DEFICIENCY.

Terence R Flotte1,2, Christian Mueller1,2, Gwladys Gernoux1, Alisha M Gruntman1,3, Jeffery Chulay4, Dave Knop4, Noel G McElvaney5, Martha Campbell-Thompson6, James M Wilson7.

1University of Massachusetts Medical School Horae Gene Therapy Center and 2Department of Pediatrics, 3Tufts Cummings School of Veterinary Medicine, 4Applied Genetic Technologies Corporation, 5Royal College of Surgeons of Ireland, 6University of Florida, 7University of Pennsylvania.

Alpha-1 antitrypsin (AAT) deficiency is a common monogenic disorder resulting in emphysema, which is currently treated with weekly infusions of protein replacement. We previously reported achieving plasma wild-type (M) AAT concentrations at 2.5-3.8% of the therapeutic level at 1 year after intramuscular (IM) administration of 6×10^{12} vg/kg of a recombinant adeno-associated virus serotype 1 (rAAV1)-AAT vector in AAT-deficient patients, with an associated regulatory T cell (Treg) response to AAV1 capsid epitopes in the absence of any exogenous immune suppression. Here, we report sustained expression at greater than 2% of the therapeutic level for 5 years after one-time treatment with rAAV1-AAT in an AAT-deficient patient from that study, with partial correction of neutrophil defects previously reported in AAT-deficient patients. There was also evidence of an active Treg response (FoxP3+, Helios+) and an exhausted cytotoxic T cell response (PD-1+, LAG-3+) to AAV1 capsid. These findings suggest that muscle-based AAT gene replacement is tolerogenic and that very stable levels of M AAT may exert beneficial effects at lower concentrations than previously anticipated.

Contact: Alisha Gruntman, Alisha.Gruntman@umassmed.edu, 508-208-8327