Bioavailability of the Antimalarial Drug Artemisinin Delivered Orally as Dried Leaves of Artemisia annua: the Role of Solubility and Protein.

Matthew Desrosiers
Worcester Polytechnic Institute

Let us know how access to this document benefits you.
Follow this and additional works at: https://escholarship.umassmed.edu/cts_retreat

Part of the Biotechnology Commons, Chemicals and Drugs Commons, Parasitic Diseases Commons, Pharmacology Commons, and the Plant Sciences Commons

Repository Citation

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.
This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in UMass Center for Clinical and Translational Science Research Retreat by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
Bioavailability of the Antimalarial Drug Artemisinin Delivered Orally as Dried Leaves of
Artemisia annua: the Role of Solubility and Protein.

Desrosiers, Matthew, Weathers, Pamela. Dept. of Biology and Biotechnology, 100 Institute
Road, Worcester Polytechnic Institute, Worcester, MA 01609.

Malaria treatment using orally consumed dried leaves of the artemisinin producing GRAS plant
Artemisia annua has recently shown promise. Previously we showed, oral consumption of A.
annua dried leaves (DLA) yielded >40 times more artemisinin in the blood of mice than
treatment with pure artemisinin. Using the Caco-2 cell culture model of the human intestinal
epithelium, we also showed that compared to pure artemisinin, digested DLA doubled the
permeability (P_{app}). Here, using simulated human digestion, we show that artemisinin solubility is
about seven times higher in digestates of DLA than in digestates of pure artemisinin, likely
contributing to its enhanced bioavailability. Digestion with pure artemisinin combined with levels
of essential oils comparable to that in DLA increased the solubility of artemisinin 2.5 times
indicating essential oils play a role in increasing artemisinin solubility. Interestingly, increasing
the starting concentration of artemisinin in Caco-2 transport studies did not alter P_{app}.
Considering malaria affects mostly young children and about 60% of the population experiences
DLA as unpleasant tasting, we also tested several protein rich foods as potential flavor-masking
agents for their effects on bioavailability. We showed that while taste was masked, peanuts and
a peanut-based paste used to treat malnutrition, PlumpyNut, reduced artemisinin and flavonoid
levels in simulated digestates, respectively, likely decreasing their bioavailability. Experiments to
{further investigate the role of several compounds such as camphor, a principle component of
the essential oil fraction, and flavonoids on artemisinin solubility and bioavailability are ongoing.
The results of these experiments are helping to explain the increased bioavailability afforded by
DLA seen in mice.

Acknowledgements
We thank Capsugel for providing capsules, Dr. Melissa Towler of Worcester Polytechnic
Institute for advice in artemisinin and flavonoid analysis, Dr. Jill Rulfs and Abbie White of
Worcester Polytechnic Institute for the taste tasting survey, and Worcester Polytechnic Institute
for partially supporting Mr. Desrosiers. We are also grateful for Award Number NIH-
R15AT008277-01 from the National Center for Complementary and Integrative Health. The
content is solely the responsibility of the authors and does not necessarily represent the official
views of the National Center for Complementary and Integrative Health or the National Institutes
of Health.

Contact:
Pamela Weathers
Email: weathers@wpi.edu