May 20th, 12:30 PM

Modulation of Severity of RPGR-associated Retinal Degeneration in Mice due to Mutations in RPGR-interacting Proteins

Linjing Li
University of Massachusetts Medical School

Nageswara Rao Kollu
University of Massachusetts Medical School

Cecinio C. Ronquillo
John A. Moran Eye Center

See next page for additional authors

Follow this and additional works at: https://escholarship.umassmed.edu/cts_retreat

Part of the [Eye Diseases Commons](https://escholarship.umassmed.edu/eye_diseases_commons), [Ophthalmology Commons](https://escholarship.umassmed.edu/ophthalmology_commons), and the [Translational Medical Research Commons](https://escholarship.umassmed.edu/translational_medical_research_commons)

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in UMass Center for Clinical and Translational Science Research Retreat by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
Presenter Information
Linjing Li, Nageswara Rao Kollu, Cecinio C. Ronquillo, Wolfgang Baehr, and Hemant Khanna

Keywords
Retinitis Pigmentosa

Comments
Abstract of poster presented at the 2014 UMass Center for Clinical and Translational Science Research Retreat, held on May 20, 2014 at the University of Massachusetts Medical School, Worcester, Mass.

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

This is available at eScholarship@UMMS: https://escholarship.umassmed.edu/cts_retreat/2014/posters/76
Modulation of severity of RPGR-associated retinal degeneration in mice due to mutations in RPGR-interacting proteins

Linjing Li¹, Nageswara Rao Kollu¹, Cecinio C. Ronquillo², Wolfgang Baehr², and Hemant Khanna¹

¹UMASS Medical School, Worcester, MA; ²Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, Salt Lake City, Utah

Purpose:
In humans, over 80% of X-linked retinitis pigmentosa (XLRP) is caused by mutations in RPGR. RPGR associated disease is clinically heterogeneous, indicating involvement of genes that can influence the associated phenotype. RPGR is known to interact with selected ciliary proteins including CEP290, RPGRIP1, NPHP1, NPHP4 and NPHP5. The purpose of this study is to assess the contribution of these RPGR-interacting proteins on the severity of RPGR-associated retinal degeneration in Rpgr⁰ mice.

Methods:
Rpgr⁰ female mice were bred with male Cep290⁰/d⁰, Nphp1⁺/-, Nphp4⁰/mf⁰, Nphp5⁺/-, Rpgrip1⁺/-. Males from F1 generation with genotype Rpgr⁰/Cep290⁺/d⁰, Rpgr⁰/Nphp1+//-, Rpgr⁰/Nphp4⁰/mf⁰/+, Rpgr⁰/Nphp5+//-, Rpgr⁰/Rpgrip1+//- were selected for further analysis. Structural and function studies were performed using Histology, transmission electron microscopy (TEM), immunofluorescence staining, and Electroretinopgraphy (ERG).

Results
The Rpgr⁰ mice exhibit degeneration of retina and relatively mild decrease in cone and rod function by 6 months of age. Our analysis of double mutant mice revealed that Rpgr⁰/Cep290⁺/d⁰ exhibit accelerated retinal degeneration as compared to Rpgr⁰ mice. TEM analysis of Rpgr⁰/Cep290⁺/d⁰ retina showed vesicle accumulation at the base of the outer segments of photoreceptors, which were not detected in the Rpgr⁰ mice. We also detected decreased cone-specific staining of M-opsin. No significant effect on the retina was observed in Rpgr⁰/Nphp1+//-, Rpgr⁰/Nphp4⁰/mf⁰/+, Rpgr⁰/Nphp5+/-, Rpgr⁰/Rpgrip1+//- (n=3) mice up to 6 months of age, as compared to Rpgr⁰.

Conclusions
Our studies suggest that mutations in CEP290 can potentially influence the severity of retinal phenotype due to mutations in RPGR. Further studies are in progress to assess the influence of additional RPGR-interacting proteins on RPGR-disease.