May 20th, 12:30 PM

Exosome-mediated Delivery of RNA Interference and miRNA Mimic

Fatemeh Momen-Heravi
University of Massachusetts Medical School

Shashi Bala
University of Massachusetts Medical School

Terence N. Bukong
University of Massachusetts Medical School

See next page for additional authors

Follow this and additional works at: https://escholarship.umassmed.edu/cts_retreat

Part of the Cell Biology Commons, Cellular and Molecular Physiology Commons, Molecular Genetics Commons, and the Translational Medical Research Commons

Momen-Heravi, Fatemeh; Bala, Shashi; Bukong, Terence N.; and Szabo, Gyongyi, "Exosome-mediated Delivery of RNA Interference and miRNA Mimic" (2014). UMass Center for Clinical and Translational Science Research Retreat. 67.
https://escholarship.umassmed.edu/cts_retreat/2014/posters/67

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in UMass Center for Clinical and Translational Science Research Retreat by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
Presenter Information
Fatemeh Momen-Heravi, Shashi Bala, Terence N. Bukong, and Gyongyi Szabo

Comments
Abstract of poster presented at the 2014 UMass Center for Clinical and Translational Science Research Retreat, held on May 20, 2014 at the University of Massachusetts Medical School, Worcester, Mass.

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.
Title: Exosome-mediated delivery of RNA interference and miRNA mimic

Full name of all Authors: Fatemeh Momen-Heravi*, DDS; Shashi Bala*, PhD; Terence Bukong, PhD; Gyongyi Szabo, M.D, Ph.D

*Equal contribution

Institutional affiliations: Department of Medicine, University of Massachusetts Medical School, Worcester, MA

Contact Information: Fatemeh Momen Heravi, UMASS Medical School/LRB-270
Fatemeh.MomenHeravi@umassmed.edu

Poster Abstract

Exosomes, membranous nanovesicles, naturally carry bio-macromolecules and play pivotal roles in both physiological intercellular crosstalk and disease pathogenesis. Here, we showed that B cell-derived exosomes can function as vehicles to deliver exogenous miRNA-155 mimic or inhibitor into hepatocytes or macrophages, respectively. Stimulation of B cells significantly increased exosome production. Unlike in parental cells, baseline level of miRNA-155 was very low in exosomes derived from stimulated B cells. Exosomes loaded with a miRNA-155 mimic significantly increased miRNA-155 levels in primary mouse hepatocytes and the liver of miRNA-155 knockout mice. Treatment of RAW macrophages with miRNA-155 inhibitor loaded exosomes resulted in statistically significant reduction in LPS-induced TNFα production and partially prevented LPS-induced decrease in SOCS1 mRNA levels. Furthermore, exosome-mediated miRNA-155 inhibitor delivery resulted in functionally more efficient inhibition and less cellular toxicity compared to conventional transfection methods. Similar approaches could be useful in modification of target biomolecules in vitro and in vivo.