May 20th, 12:30 PM

Differential Gene Expression Analysis and Clinical Correlations within Endemic Burkitt Lymphoma

Yasin Kaymaz
University of Massachusetts Medical School

Cliff I. Oduor
Maseno University College

John Vulule
Maseno University

See next page for additional authors

Follow this and additional works at: https://escholarship.umassmed.edu/cts_retreat

Part of the Bioinformatics Commons, Hemic and Lymphatic Diseases Commons, Immunology and Infectious Disease Commons, Integrative Biology Commons, Neoplasms Commons, Pediatrics Commons, Translational Medical Research Commons, and the Virus Diseases Commons

https://escholarship.umassmed.edu/cts_retreat/2014/posters/59

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in UMass Center for Clinical and Translational Science Research Retreat by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
Presenter Information
Yasin Kaymaz, Cliff I. Oduor, John Vulule, Juliana A. Otieno, Ann M. Moormann, and Jeffrey A. Bailey

Comments
Abstract of poster presented at the 2014 UMass Center for Clinical and Translational Science Research Retreat, held on May 20, 2014 at the University of Massachusetts Medical School, Worcester, Mass.

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.
Differential gene expression analysis and clinical correlations within endemic Burkitt lymphoma

Yasin Kaymaz (1), Cliff Odour (2), John Vulule (2), Juliana A Otieno (3) Ann M. Moormann (4, 5) and Jeffrey A. Bailey (1, 6)

(1) Program in Bioinformatics and Integrative Biology, (2) Kenyan Medical Research Institute and Maseno University, Kenya, (3) Kenya Ministry of Health, (4) Pediatrics (5) Quantitative Health Sciences (6) Medicine

Contact: jeffrey.bailey@umassmed.edu. ann.moormann@umassmed.edu

Endemic Burkitt lymphoma (eBL) is the most common pediatric cancer in equatorial Africa and is associated with malaria and Epstein-Barr virus co-infections. Molecular alterations within the eBL tumor genome and transcriptome have not been adequately investigated or compared to sporadic Burkitt lymphoma (sBL). Given that eBL has distinct clinical presentations in the jaw as opposed to the abdomen which are associated with survival, we hypothesize that transcriptome sequencing (RNA-seq) and potentially underlying genetic alterations will enhance our understanding of pathogenesis. Our results compare genome-wide RNA transcript abundances between eBL tumors from children (ages 6-7 yrs) with Stage I (Jaw tumor, n=14) and Stage II (abdominal, n=24) disease from Western Kenya to previously published work analyzing sBL which present in older children residing in developed countries and that tend not to be associated with EBV. Our initial analysis confirms mutational changes with likely functional alterations in the genes ID3 and TCF3, the key regulators of oncogenic pathways implicated in BL. However, the specific mutations observed in sBL are at lower frequency within eBL cases. This work represents the first comprehensive gene expression profile analysis of different eBL tumors. Hierarchical clustering, gene ontology and pathway analysis will provide insight into pathogenesis and new targets for chemotherapy.