May 20th, 12:30 PM

Severity of Infectious Mononucleosis (IM) Correlates with the Frequency of Crossreactive Influenza A Virus (IAV)-M1 and Epstein Barr Virus (EBV)-BMLF-1-specific CD8 T Cells

Nuray Aslan
University of Massachusetts Medical School

Levi B. Watkin
University of Massachusetts Medical School

Anna Gil
University of Massachusetts Medical School

See next page for additional authors

Follow this and additional works at: https://escholarship.umassmed.edu/cts_retreat
[Part of the *Immunology of Infectious Disease Commons, Immunopathology Commons, Translational Medical Research Commons*, and the *Virus Diseases Commons*](https://escholarship.umassmed.edu/cts_retreat/2014/posters/8)

Aslan, Nuray; Watkin, Levi B.; Gil, Anna; Luzuriaga, Katherine; and Selin, Liisa K., "Severity of Infectious Mononucleosis (IM) Correlates with the Frequency of Crossreactive Influenza A Virus (IAV)-M1 and Epstein Barr Virus (EBV)-BMLF-1-specific CD8 T Cells" (2014). *UMass Center for Clinical and Translational Science Research Retreat*. 8.
https://escholarship.umassmed.edu/cts_retreat/2014/posters/8

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in UMass Center for Clinical and Translational Science Research Retreat by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
Presenter Information
Nuray Aslan, Levi B. Watkin, Anna Gil, Katherine Luzuriaga, and Liisa K. Selin

Comments
Abstract of poster presented at the 2014 UMass Center for Clinical and Translational Science Research Retreat, held on May 20, 2014 at the University of Massachusetts Medical School, Worcester, Mass.

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.
Severity of infectious mononucleosis (IM) correlates with the frequency of crossreactive influenza A virus (IAV)-M1 and Epstein Barr virus (EBV)-BMLF-1-specific CD8 T cells

Nuray Aslan1, Levi Watkin1, Anna Gil, Katherine Luzuriaga2, \textbf{Liisa K. Selin}1
1Department of Pathology, 2Department of Pediatrics, University of Massachusetts Medical School, Worcester

Contact information:
Liisa Selin
Department of Pathology
Phone: 508.856.3039
Email: Liisa.Selin@umassmed.edu

During EBV-associated IM IAV-specific crossreactive memory T cells are activated and play a role in disease severity. In HLA-A2+ IM patients, influenza M1\textsubscript{58} (IAV-M1)-specific CD8 memory T cell responses crossreacted with two different EBV lytic epitopes, BMLF1\textsubscript{280} (17/29) and BRLF1\textsubscript{190} (19/20). Furthermore, 11/22 IM patients demonstrated some intra-viral crossreactivity between EBV-BRLF1 and -BMLF1 responses. Disease severity of IM directly correlated with significantly increased frequencies of crossreactive IAV-M1/EBV-BMLF1, IAV-M1, and EBV-BMLF1 specific CD8 cells, and with mean viral load over the first 5 weeks of infection. Disease severity did not correlate with BRLF1 or M1/BRLF1 crossreactive responses. When severity of IM was scored and patients were assigned to either mild or severe groups, disease severity correlated with specific TCR Vb usage in IAV-M1 population suggesting that TcR selection is driving disease outcome. Consistent with IAV-M1 and EBV-BMLF1 responses driving increased immunopathology was the observation that patients with severe disease had significantly more IAV-M1 and EBV-BMLF1 cells producing IFNg/MIP1-b in response to antigen as compared to patients with mild disease. These results suggest that T cell crossreactivity impacts T cell selection and function and ultimately disease outcome. Insights on these issues are important for the intelligent design of vaccines and to develop therapeutic interventions for virally induced disease (NIHAI49320).