May 20th, 12:30 PM

A pH Stable Turn-on Fluorescent Sensor for Imaging Labile Fe3+ in Living Cells

Bayan Alhawsah
University of Massachusetts - Dartmouth

Ziya Aydin
University of Massachusetts - Dartmouth

Bing Yang
University of Massachusetts - Dartmouth

See next page for additional authors

Follow this and additional works at: https://escholarship.umassmed.edu/cts_retreat

Part of the Chemistry Commons, Investigative Techniques Commons, and the Translational Medical Research Commons

Alhawsah, Bayan; Aydin, Ziya; Yang, Bing; and Guo, Maolin, "A pH Stable Turn-on Fluorescent Sensor for Imaging Labile Fe3+ in Living Cells" (2014). UMass Center for Clinical and Translational Science Research Retreat. 3.
https://escholarship.umassmed.edu/cts_retreat/2014/posters/3

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in UMass Center for Clinical and Translational Science Research Retreat by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
Presenter Information
Bayan Alhawsah, Ziya Aydin, Bing Yang, and Maolin Guo

Comments
Abstract of poster presented at the 2014 UMass Center for Clinical and Translational Science Research Retreat, held on May 20, 2014 at the University of Massachusetts Medical School, Worcester, Mass.

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

This poster abstract is available at eScholarship@UMMS: https://escholarship.umassmed.edu/cts_retreat/2014/posters/3
Fluorescent sensors has received considerable interest in recent years because of its ability to provide visualized monitoring of very low concentrations together with the advantages of spatial and temporal resolution. Over the past two decades, several fluorescent sensors for iron (III) have been reported. However, the currently known fluorescent sensors that are capable of cellular iron imaging are largely limited to “turn-off” type, providing useful information but suffering from poor sensitivity, or interference from other metal ions. We have been developing rhodamine based turn-on fluorescent sensors. Here we report a new iron (III) sensor, Rh-PK, which is stable in low pH’s and is capable of detecting basal level Fe\(^{3+}\) in the human live cells at subcellular resolution.

We thank the National Science Foundation for funding this project.