May 8th, 1:30 PM - 3:00 PM

Therapeutic Approaches to Aggressive Carcinomas Based on a Novel VEGF/Neuropilin Autocrine Pathway

Hira Lal Goel  
*University of Massachusetts Medical School*

Arthur M. Mercurio  
*University of Massachusetts Medical School*

Follow this and additional works at: [https://escholarship.umassmed.edu/cts_retreat](https://escholarship.umassmed.edu/cts_retreat)

Part of the Cancer Biology Commons, Neoplasms Commons, Therapeutics Commons, and the Translational Medical Research Commons

Creative Commons Attribution-Noncommercial-Share Alike 3.0 License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.
Biology of High-Grade Carcinomas

Triple-Negative Breast Ca
High Gleason Grade Prostate Ca

Poorly differentiated
Aggressive; poor prognosis
Difficult to treat

Mechanisms
- Embryonic gene expression
- Epithelial mesenchymal transition
- Cell autonomous pathways
- High % of 'cancer stem cells'
Cancer Stem Cells and Tumor Differentiation

Frequency of cancer stem cells increases with tumor grade—poorly differentiated carcinomas harbor relatively high frequency of cancer stem cells. *Pece et al., Cell 2010*

**Autocrine Signaling Pathways** Sustain the Function of Cancer Stem Cells and the Distinct Characteristics of Poorly Differentiated Carcinomas & Are Prime Targets for Therapy

**Vascular Endothelial Growth Factor (VEGF)**
VEGF IS MUCH MORE THAN AN ANGIOGENIC FACTOR

VEGF

Endothelial Cell

Macrophage

Tumor Cell

Tumor Formation Progression

Angiogenesis
VEGF and VEGF Tyrosine Kinase Receptors
NEUROPILIN-1 & 2

Bind two structurally distinct ligands: Semaphorins and VEGFs

NRPs mediate axon guidance, angiogenesis

NRPs Function as Co-Receptors

Michael Klagsbrun
(Childrens Hospital)
Neuropilin-2 Expression is Highly Enriched in Breast Tumor Stem Cells

CD44+/CD24- (Stem Cell Properties)

Formation of Mammospheres from Human Breast Ca Biopsy is Inhibited by NRP2 Ab
VEGF/NRP2 Signaling Contributes to Tumor Initiation

Defined a Signaling Pathway That Can Be Targeted for Therapy

FAK Inhibitors in Clinical Trials

FAK

Laminin

VEGF

NRP2

d6h1

Therapeutic Abs Exist

RAS

Gli1

Bmi-1, NRP2, VEGF

Nucleus

Tumor initiation

Bmi-1: Polycomb group transcriptional repressor

Represses p16/INK4A

Implicated in the self-renewal function of stem cells
Implications of VEGF/NRP2 Signaling for Breast Cancer Therapy

- Bevacizumab (Avastin) (Not effective-FDA) Does Not Inhibit VEGF/NRP2
- Targeting NRP2 Directly Humanized Ab Available
- VEGF
- NRP2
- α6β1 Integrin
- FAK

FAK Inhibitor (VS-6030) In Clinical Trials
Implications of VEGF/NRP2 Signaling for Breast Cancer Therapy

Transgenic Mouse Model of Triple Negative Breast Cancer
TgMFT121; Brca1f/f p53f/f; TgWAP-Cre
Karl Simin (PLoS Genetics)

NRP2 Ab Treatment Reduces Tumor Formation

NRP2 AB Treatment Causes Stasis of Established Tumors (SUM1315)

(Generetech Anti-NRP2B)
Prostate Cancer: NRP2 Expression is Induced by PTEN Loss and Correlates with Gleason Grade

c-Jun is Induced by PTEN loss and regulates NRP2 expression
VEGF/NRP2 Signaling Represses IGF-1R Signaling in Prostate Cancer

Implications for Therapy?
Combined NRP2 and IGF-1R Inhibition of Prostate Tumor Growth

- Control
- Anti-IGF-1R
- Anti-NRP2
- Anti-NRP2 + Anti-IGF-1R

Tumor Volume vs. Days
SUMMARY

• Autocrine VEGF signaling in tumor cells contributes to de-differentiation and function of tumor initiating/stem cells

• NRP2 is the nexus of a signaling pathway that promotes de-differentiation and sustains tumor initiating/stem cells

• Anti-NRP2 therapy is worth pursuing, especially for high-grade cancers. Therapeutic Abs are available.