3-2011

Treatment of Rheumatoid Arthritis with Marine and Botanical Oils: Influence on Serum Lipids (poster)

Barbara C. Olendzki
University of Massachusetts Medical School

Katherine Leung
University of Massachusetts Medical School

Susan Van Buskirk
University of Massachusetts Medical School

See next page for additional authors

Follow this and additional works at: https://escholarship.umassmed.edu/prevbeh_pp

Part of the Alternative and Complementary Medicine Commons, Behavioral Disciplines and Activities Commons, Behavior and Behavior Mechanisms Commons, Community Health and Preventive Medicine Commons, Musculoskeletal Diseases Commons, and the Preventive Medicine Commons

Repository Citation
Olendzki, Barbara C.; Leung, Katherine; Van Buskirk, Susan; Reed, George W.; and Zurier, Robert B., "Treatment of Rheumatoid Arthritis with Marine and Botanical Oils: Influence on Serum Lipids (poster)" (2011). Preventive and Behavioral Medicine Publications and Presentations. 165.
https://escholarship.umassmed.edu/prevbeh_pp/165

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Preventive and Behavioral Medicine Publications and Presentations by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
Treatment of Rheumatoid Arthritis with Marine and Botanical Oils: Influence on Serum Lipids (poster)

Authors
Barbara C. Olendzki, Katherine Leung, Susan Van Buskirk, George W. Reed, and Robert B. Zurier

Comments
Presented at the Massachusetts Dietetic Association Conference, March 2011.

This poster is available at eScholarship@UMMS: https://escholarship.umassmed.edu/prevbeh_pp/165
Treatment of Rheumatoid Arthritis with Marine and Botanical Oils: Influence on Serum Lipids
Barbara Olendzki, RD, MPH; Katherine Leung, MPH, Susan Van Buskirk, M.Ed., CCRC, George Reed, PhD, and Robert B. Zurier, MD
Division of Preventive and Behavioral Medicine, University of Massachusetts Medical School, Worcester, MA

BACKGROUND
Over the past 30 years substantial progress has been made in the medical and surgical management of patients with rheumatoid arthritis (RA). Despite this progress, there is an increasing gap in mortality between patients with RA (1.5-3.0 fold) risk and the general population. This disparity is mainly attributable to cardiovascular disease (CVD) as the CVD risk is comparable in RA patients as to patients with diabetes mellitus. Although the reasons for this gap are not entirely clear, the traditional risk of abnormalities in lipid profiles appears to be enhanced by a chronic increase in inflammatory cytokines, resulting in accelerated atherosclerosis.

Study Objective
The object of this study was to determine the effect of marine (fish oil) and botanical oils (borage oil) on lipids (TC, HDL, LDL, TG) and fibrinogen, a risk factor for cardiovascular disease in patients with RA. The main outcome (to be presented elsewhere) was to determine whether a combination of borage seed oil rich in gammapolynamic acid (GLA) and fish oil rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) is superior to either oil alone for the treatment of RA.

METHODS

Population and Setting
• The study was an 18 month randomized, double-masked comparison of borage seed oil, fish oil, and the combination of both oils in RA patients with active synovitis.
• The protocol was approved by the Committee for the Protection of Human Subjects in Research at the University of Massachusetts Medical School and by the Food and Drug Administration. Subsequent approvals were obtained from Review Boards at the University of Alabama, Geisinger Clinic, Fallon Health Care, and the New England IRB.

Eligibility/Demographics for theRCT
Eligibility: Patients were eligible to participate in the study if they had RA according to the 1987 criteria of the American Rheumatism Association, were in functional class I, II, or III according to the revised criteria of the American College of Rheumatology, and were between the ages of 18 and 85.

Demographics: Age, gender, education, income, medications, and the modified disease activity score (DAS 28); and Clinical Disease Activity Index (CDAI) were also collected.

Anthropometric Measures: Height and weight; calculated body mass index (BMI); Systolic and diastolic blood pressure (SBP, DBP)

Survey Measures: Diet: assessed by 24-hour dietary assessment calls (24HR), performed at baseline and 18 months. Demographics: Age, gender, education, income, medications, and the modified disease activity score (DAS 28); and Clinical Disease Activity Index (CDAI) were also collected.

RESULTS

Serum Lipids Results

<table>
<thead>
<tr>
<th></th>
<th>Baseline Mean (SD)</th>
<th>Change from Baseline to 9 months (N=83)</th>
<th>Change from Baseline to 18 months (N=69)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total cholesterol</td>
<td>107.57 (17.48)</td>
<td>-3.4</td>
<td>-12.99 to -3.86</td>
</tr>
<tr>
<td>LDL</td>
<td>114.03 (32.20)</td>
<td>-4.39*</td>
<td>-13.87 to 4.41</td>
</tr>
<tr>
<td>HDL</td>
<td>54.34 (16.23)</td>
<td>3.99*</td>
<td>1.03 to 4.4</td>
</tr>
<tr>
<td>TC/CHLD ratio†</td>
<td>3.83 (1.03)</td>
<td>-2.20*</td>
<td>-3.24 to -1.19</td>
</tr>
<tr>
<td>Triglyceride</td>
<td>118.08 (59.61)</td>
<td>-24.42*</td>
<td>-33.22 to -15.61</td>
</tr>
<tr>
<td>Atherogenic Index of Plasma</td>
<td>0.84 (0.67)</td>
<td>-0.22*</td>
<td>-0.33 to -0.19</td>
</tr>
</tbody>
</table>

Change from Baseline for Other Measurements

<table>
<thead>
<tr>
<th></th>
<th>Change at 9 months: (95% CI)</th>
<th>Change at 18 months: (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>-0.52 (-1.43 to 0.39)</td>
<td>-0.35 (-2.43 to 1.74)</td>
</tr>
<tr>
<td>Systolic blood pressure</td>
<td>-1.77 (-0.46 to 2.30)</td>
<td>-0.24 (-1.37 to 0.89)</td>
</tr>
<tr>
<td>Diastolic blood pressure</td>
<td>-2.12* (0.58 to 4.09)</td>
<td>1.88* (0.003 to 3.79)</td>
</tr>
<tr>
<td>ESR†</td>
<td>-5.39 (-9.27 to -1.51)</td>
<td>-4.42* (-7.28 to -0.58)</td>
</tr>
<tr>
<td>CRP†</td>
<td>-0.65* (-1.20 to -0.10)</td>
<td>0.09 (0.77 to 0.60)</td>
</tr>
</tbody>
</table>

Triglycerides and Atherogenic Index of Plasma (AIP) by Group

<table>
<thead>
<tr>
<th></th>
<th>Combination Group (95% CI)</th>
<th>Fish Oil Group (95% CI)</th>
<th>Borage Oil Group (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 months</td>
<td>-19.22 (-46.58 to -6.03)</td>
<td>-29.81 (-56.58 to -1.88)</td>
<td>-14.50 (-24.50 to -3.88)</td>
<td>0.011</td>
</tr>
<tr>
<td>18 months</td>
<td>-15.27 (-35.16 to 11.80)</td>
<td>-29.81 (-56.58 to -1.88)</td>
<td>-37.32 (-63.74 to -6.90)</td>
<td>0.011</td>
</tr>
</tbody>
</table>

P-value is from log transformation. Changes shown are from the original scale for the group x time interaction and control for baseline values. Values are presented as regression coefficient (95% CI).

DISCUSSION
Rheumatoid Arthritis (RA) is a chronic systemic inflammatory disease. Mediators of inflammation and prothrombotic factors contribute to endothelial dysfunction and development of cardiovascular disease in RA patients. Marine and botanical oils represent an excellent primary or secondary therapy for improvement of the cardiovascular risk management in RA patients.

Patients taking these oils exhibit significant additional reductions in total and LDL-cholesterol, triglycerides, the TC/HDLD ratio, and in the atherogenic index, and experience a significant increase in HDL-cholesterol. All of these improvements in the lipid profile were seen after 9 months of therapy, and increased after 18 months of oils administration.

The overall dropout rate was 51%, and was similar across groups: 25 in the borage oil group, 28 in the fish oil group, and 22 in the combination group. Reasons for dropout were mainly gastrointestinal distress (belching, bloating, diarrhea, nausea, cramping), or an inability to swallow the large number of rather sizable capsules. This can be ameliorated by freezing the capsules and reducing their size. Among those evaluated for this study, compliance was 100%, assessed by pill counts.

Learning Outcome:
All treatments were safe, thus treatment of RA patients with one or a combination of these or similar oils should prove useful for reduction of cardiovascular risk in RA patients.

ACKNOWLEDGEMENT
These studies were supported by the National Institutes of Health Grant R01-AT000309 from the National Center for Complementary and Alternative Medicine. We are grateful for the statistical help of Robert Magner, and the efforts of the principal investigators at the 13 sites and their patients, whom this study would not have been possible.