Expression of ITGB8 in Epicardial Adipose Tissue is Highly and Directly Correlated with the Severity of Coronary Atherosclerosis

Nancy Lee
University of Massachusetts Medical School

Sarah M. Nicoloro
University of Massachusetts Medical School

Juerg R. Straubhaar
University of Massachusetts Medical School

See next page for additional authors

Follow this and additional works at: https://escholarship.umassmed.edu/ssp
Part of the Amino Acids, Peptides, and Proteins Commons, Biochemistry, Biophysics, and Structural Biology Commons, Cardiology Commons, and the Cardiovascular Diseases Commons

Repository Citation

Lee, Nancy; Nicoloro, Sarah M.; Straubhaar, Juerg R.; Darrigo, Melinda; Tam, Stanley; Czech, Michael P.; and Fitzgibbons, Timothy P., "Expression of ITGB8 in Epicardial Adipose Tissue is Highly and Directly Correlated with the Severity of Coronary Atherosclerosis" (2013). University of Massachusetts Medical School. Senior Scholars Program. Paper 152.
https://escholarship.umassmed.edu/ssp/152
Expression of ITGB8 in Epicardial Adipose Tissue is Highly and Directly Correlated with the Severity of Coronary Atherosclerosis

Authors
Nancy Lee, Sarah M. Nicoloro, Juerg R. Straubhaar, Melinda Darrigo, Stanley Tam, Michael P. Czech, and Timothy P. Fitzgibbons

Comments
Medical student Nancy Lee participated in this study as part of the Senior Scholars research program at the University of Massachusetts Medical School.

This poster is available at eScholarship@UMMS: https://escholarship.umassmed.edu/ssp/152
Expression of ITGB8 in Epicardial Adipose Tissue is Highly and Directly Correlated with the Severity of Coronary Atherosclerosis
Nancy Lee MSIV, Sarah Nicoloro PhD1, Juerg Straubhaar PhD1, Melinda Darrigo NP/PhD2, Stanley Tam MD2, Michael Czech PhD1, and Timothy Fitzgibbons MD,PhD3

1University of Massachusetts Medical School, Molecular Medicine, Worcester, MA; 2University of Massachusetts Medical School, Division of Cardiothoracic Surgery, Worcester, MA; 3University of Massachusetts Medical School, Department of Medicine, Division of Cardiovascular Medicine, Worcester, MA.

Background
Obesity and its associated cardiovascular diseases have reached epidemic proportions. Prior studies suggest that in those with increased visceral adiposity, immune cells in visceral adipose tissue (VAT) establish chronic local inflammation that results in ectopic lipid deposition in peripheral organs and insulin resistance.

Epicardial adipose tissue (EAT) has been advanced as a possible direct link between obesity and cardiovascular disease. In patients with coronary artery disease (CAD), EAT has been shown to express increased levels of inflammatory cytokines.

What is not currently understood is whether or not inflammatory gene expression influences the development of atherosclerosis or is a compensatory response to established disease.

Methods

- Informed consent obtained from controls (pts without CAD) and cases (pts with CAD) scheduled for elective cardiothoracic surgery.
- 500 mg EAT and SAT collected at the time of surgery, fixed for microscopy and frozen for RNA extraction.
- RNA was hybridized to Affymetrix Human Gene 1.0 ST chips.
- Genes w/ FC>3 in EAT vs. SAT were identified.
- Gensini scores for participants determined through review of cardiac catheterization data.
- Probe intensities for these resultant genes were then correlated with the severity of atherosclerosis in each patient as determined by the Gensini score.

Results

Is Subcutaneous Fat Different than Epicardial Fat?

- Of these, 35 genes differentially expressed in EAT vs SAT by FC>3 and p<0.05

<table>
<thead>
<tr>
<th>Gene</th>
<th>FC</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITGB8</td>
<td>0.94</td>
<td>0.0001</td>
</tr>
<tr>
<td>MRE171</td>
<td>0.77</td>
<td>0.0184</td>
</tr>
<tr>
<td>COL1A1</td>
<td>0.75</td>
<td>0.0074</td>
</tr>
<tr>
<td>PTPN2</td>
<td>0.77</td>
<td>0.0074</td>
</tr>
<tr>
<td>DUSP5</td>
<td>0.73</td>
<td>0.0202</td>
</tr>
<tr>
<td>IL18</td>
<td>0.69</td>
<td>0.0216</td>
</tr>
<tr>
<td>IFN1</td>
<td>0.66</td>
<td>0.0249</td>
</tr>
<tr>
<td>LOX1</td>
<td>0.70</td>
<td>0.0368</td>
</tr>
<tr>
<td>LPA</td>
<td>0.70</td>
<td>0.0371</td>
</tr>
<tr>
<td>LRP2</td>
<td>0.80</td>
<td>0.0378</td>
</tr>
<tr>
<td>HPR</td>
<td>0.79</td>
<td>0.0387</td>
</tr>
<tr>
<td>STAP2</td>
<td>0.81</td>
<td>0.0427</td>
</tr>
<tr>
<td>TGM2</td>
<td>0.77</td>
<td>0.0436</td>
</tr>
<tr>
<td>S100A8</td>
<td>0.77</td>
<td>0.0476</td>
</tr>
<tr>
<td>S100A9</td>
<td>0.77</td>
<td>0.0476</td>
</tr>
<tr>
<td>ICAM1</td>
<td>0.67</td>
<td>0.0476</td>
</tr>
</tbody>
</table>

- Of the 35, 14 are correlated with CAD severity measured by Gensini score

Of the 14 genes correlated with CAD severity, EAT expression of ITGB8 had the strongest positive correlation. Importantly, this relationship did not persist in SAT, suggesting it was an effect specific to EAT.

Conclusion

Expression of ITGB8 was found to be directly correlated with CAD severity. Integrin αvβ8 (ITGB8) has been previously shown to be expressed by fibroblasts and functions to activate immunomodulating TGFβ. TGFβ signaling has also been correlated with advanced atherosclerosis. We speculate that EAT expression of ITGB8 may have pro-inflammatory effects, possibly through activation of TGFβ, and stimulating recruitment of dendritic cells or T cells to secondary lymphoid organs in EAT. Whether or not this is the case is a goal of future studies.

Acknowledgements
- CT Surgery Team
- Dr. Rebecca Baumann
- Phyllis Spatrick (Genomics Core)
- DERC Morphology Core
- Dr. John Keaney
- American Heart Association (FTF Award to TPF)