Maltoheptaose Promotes Nanoparticle Internalization by *Escherichia coli*

H. Surangi N. Jayawardena
University of Massachusetts Lowell

Kalana W. Jayawardana
University of Massachusetts Lowell

Xuan Chen
University of Massachusetts Lowell

See next page for additional authors

Follow this and additional works at: https://escholarship.umassmed.edu/cts_retreat

Part of the [Biochemistry Commons](https://escholarship.umassmed.edu/biochemistry), [Chemistry Commons](https://escholarship.umassmed.edu/chemistry), [Nanoscience and Nanotechnology Commons](https://escholarship.umassmed.edu/nanoscience), [Therapeutics Commons](https://escholarship.umassmed.edu/therapeutics), and the [Translational Medical Research Commons](https://escholarship.umassmed.edu/translational_medical)

Jayawardena, H. Surangi N.; Jayawardana, Kalana W.; Chen, Xuan; and Yan, Mingdi, "Maltoheptaose Promotes Nanoparticle Internalization by *Escherichia coli*" (2013). *UMass Center for Clinical and Translational Science Research Retreat*. 44.
https://escholarship.umassmed.edu/cts_retreat/2013/posters/44

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in UMass Center for Clinical and Translational Science Research Retreat by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
Presenter Information
H. Surangi N. Jayawardena, Kalana W. Jayawardana, Xuan Chen, and Mingdi Yan

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

This event is available at eScholarship@UMMS: https://escholarship.umassmed.edu/cts_retreat/2013/posters/44
Maltoheptaose Promotes Nanoparticle Internalization by *Escherichia coli*

H. Surangi N. Jayawardena, Kalana W. Jayawardana, Xuan Chen, Mingdi Yan
Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854
Fax: (978)-334-3013; Tel: (978)-334-3647; E-mail: mingdi_yan@uml.edu

Abstract: Nanoparticles conjugated with d-maltoheptaose (G7) showed a striking increase in the surface adherence and internalization by *E. coli*. This applies to silica nanoparticles (SNP), magnetic nanoparticles (MNP), silica-coated magnetic nanoparticles (SMNP) and silica-coated quantum dots (SQDs) ranging from a few to over a hundred nanometers in size, as well as wild type *E. coli* ATCC 33456, ORN 178, ORN 208 with the maltodextrin transport channel and the LamB mutant JW 3392-1 (Fig. 1). TEM images including the thin section samples revealed the uptake of nanoparticles in cell walls and inside the cytoplasm (Fig. 2). Unfunctionalized nanoparticles and nanoparticles functionalized with β-cyclodextrin (CD) showed little or no binding to the *E. coli* cell surface, and no obvious internalization of the nanoparticles was observed. D-Mannose-functionalized nanoparticles bound to the pili of *E. coli* ORN 178 through the well-known Man-binding lectin (FimH) rather than cell internalization. Surface ligands that can improve the uptake of nanomaterials to bacterial cells should provide a powerful means of targeting a payload delivery to a potential disease causing strain. Work is underway to develop nanomaterial delivery systems for multidrug resistance bacteria.

Figure 1. TEM images of G7-SMNP incubated with *E. coli* strain (a) ATCC 33456, (b) JW3392-1, (c) ORN 178, (d) ORN 208; G7-SQD incubated with *E. coli* strain (e) ATCC 33456, (f) JW3392-1, (g) ORN 178, (h) ORN 208; G7-SNP incubated with *E. coli* strain (i) ATCC 33456, (j) JW3392-1, (k) ORN 178, (l) ORN 208. Scale bars: 500 nm.

Figure 2. TEM thin section images of ATCC 33456 after treating with (a) G7-MNP and (b) CD-MNP. (c) TEM thin section image of ATCC 33456. Scale bars: 100 nm.

References