Speciation in Cicada Populations: Data Management in Ecology & Evolutionary Biology

Carey MacDonald
Simmons College Graduate School of Library and Information Science

Follow this and additional works at: https://escholarship.umassmed.edu/escience_symposium

Part of the Scholarly Communication Commons

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

Repository Citation

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in University of Massachusetts and New England Area Librarian e-Science Symposium by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
Speciation in Cicada Populations

Data Management in Ecology & Evolutionary Biology

Carey MacDonald | Simmons College School of Library & Information Science | Carey.macdonald@simmons.edu

Introduction
This case study was developed for the Scientific Research Data Management course at Simmons College, and focuses on research led by an ecology & evolutionary biology laboratory at a reputable research university in New England.

Research Goals
To understand the effects of landscape & climate changes on speciation in New Zealand cicadas.

Case Study Method
An interview instrument was developed using the Johns Hopkins University DMP template and the New England Collaborative Data Management Curriculum simplified DMP template to interview a postdoctoral researcher over Skype, and twice more over email. A case study and DMP were subsequently written.

Data Management Modules

<table>
<thead>
<tr>
<th>Data Management Modules</th>
<th>Current</th>
<th>Proposed Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module 2: Data Types & Products</td>
<td>Specimens, DNA, JPGs, SHPs, RAW Audio</td>
<td>+ Use archival-quality TIFF</td>
</tr>
<tr>
<td>Module 3: Contextual Details (Metadata)</td>
<td>Specimen code applied at each stage</td>
<td>+ Apply metadata schema as well</td>
</tr>
<tr>
<td>Module 4: Data Storage, Backup & Security</td>
<td>Hard drive & Cloud storage & backups</td>
<td>+ Migrate from paper to ELNs as well</td>
</tr>
<tr>
<td>Module 5: Legal & Ethical Concerns</td>
<td>No anonymization or animal welfare concerns</td>
<td></td>
</tr>
<tr>
<td>Module 6: Data Sharing & Reuse</td>
<td>Data available for sharing and reuse</td>
<td>+ Reduce amount of embargoed data</td>
</tr>
<tr>
<td>Module 7: Data Archiving & Preservation</td>
<td>Dryad, Genbank, museum repositories & lab website databases</td>
<td>+ Migrate from website to IR & Dryad</td>
</tr>
</tbody>
</table>

Conclusion
Metadata and the storage and preservation of research data are critical to sharing and reuse for future research, as stipulated by the DMP.

Acknowledgements
John Cooley & Chris Simon, Elaine Martin, Regina Raboin, Julie Goldman, Simmons LIS 532G Fall 2015 & NZ Cicada Photo Gallery.

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.