Estrogen receptor beta selectively restricts proliferation and favors surveillance in mammary epithelial cells

Karen A. Dunphy
University of Massachusetts Amherst

Erick Roman-Perez
University of Massachusetts Amherst

Rehaneh Hooshyar
University of Massachusetts Amherst

See next page for additional authors

Follow this and additional works at: https://escholarship.umassmed.edu/cts_retreat

Part of the [Cancer Biology Commons](https://escholarship.umassmed.edu/cancer_biology), [Cell Biology Commons](https://escholarship.umassmed.edu/cell_biology), [Neoplasms Commons](https://escholarship.umassmed.edu/neoplasms), [Oncology Commons](https://escholarship.umassmed.edu/oncology), and the [Translational Medical Research Commons](https://escholarship.umassmed.edu/translational_medical)

Dunphy, Karen A.; Roman-Perez, Erick; Hooshyar, Rehaneh; Hagen, Mary J.; Roberts, Amy L.; Guerrero-Zayas, Mara Isel; and Jerry, D. Joseph, "Estrogen receptor beta selectively restricts proliferation and favors surveillance in mammary epithelial cells" (2013).
UMass Center for Clinical and Translational Science Research Retreat. 61.
https://escholarship.umassmed.edu/cts_retreat/2013/posters/61
Presenter Information
Karen A. Dunphy, Erick Roman-Perez, Rehaneh Hooshyar, Mary J. Hagen, Amy L. Roberts, Mara Isel Guerrero-Zayas, and D. Joseph Jerry

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License. This poster abstract is available at eScholarship@UMMS: https://escholarship.umassmed.edu/cts_retreat/2013/posters/61
Title: Estrogen receptor beta selectively restricts proliferation and favors surveillance in mammary epithelial cells

Authors: Karen A. Dunphy1,2, Erick Roman-Perez1, Rehaneh Hooshyar1, Mary J. Hagen1, Amy L. Roberts1,2, Mara Isel Guerrero-Zayas1, and D. Joseph Jerry1,2

Institutional affiliations: 1Department of Veterinary and Animal Science, University of Massachusetts-Amherst, Amherst, MA 01003 & 2Pioneer Valley Life Sciences Institute, Springfield, MA 01199

Contact Information: Karen A. Dunphy
Email: kdunphy@vasci.umass.edu
Phone: (413)545-2427

Abstract:

Estrogen (17β-estradiol) has paradoxical effects in both promoting and preventing breast cancer as estrogen activates proliferation, but also promotes p53-mediated surveillance pathways. Estrogen mediates its effects in target tissues through the activation of estrogen receptor subtypes: ER\textsubscript{α} and ER\textsubscript{β}. To examine the capability of these receptors in mediating surveillance as opposed to proliferation, selective estrogen receptor agonists were compared with 17β-estradiol for induction of proliferation and radiation-induced apoptosis \textit{in vivo}. Transcriptional regulation of estrogen-responsive genes was also compared in mouse mammary epithelium \textit{in vivo} and in the human mammary MCF7 cell line transduced with a repressible ER\textsubscript{β}. Selective activation of ER\textsubscript{β} with the agonist diarylpropionitrile (DPN) \textit{in vivo} enhances p53-mediated apoptosis in the mouse mammary epithelium without stimulating proliferation. In addition, radiation-induced apoptosis is significantly reduced in mice lacking ER\textsubscript{β} (\textit{β}ERKO). As expected, 17β-estradiol or selective activation of ER\textsubscript{α} with pyrazole triol (PPT) induced the expression of estrogen-response genes including progesterone receptor, amphiregulin and trefoil factor 1. DPN and ER\textsubscript{β} failed to induce the expression of these genes. Interestingly, the ER\textsubscript{β} agonist DPN selectively induced the expression of genes that repress proliferation including TGF\textsubscript{β}2 while inhibiting proliferative canonical wnt signaling via beta-catenin by inducing WNT5a and AXIN2. DPN was also more potent in stimulating the expression of EGR1, a modulator of p53 activity. These results suggest that ER\textsubscript{α} and ER\textsubscript{β} have distinct roles in gene regulation. In addition, the ability of DPN and ER\textsubscript{β} to potentiate surveillance pathways while limiting proliferation suggests that ER\textsubscript{β} agonists may have therapeutic and chemopreventive value in breast cancer.