Caenorhabditis elegans ALG-1 antimorphic mutations uncover functions for Argonaute in microRNA guide strand selection and passenger strand disposal

Anna Y. Zinovyeva
University of Massachusetts Medical School

Isana Veksler-Lublinsky
University of Massachusetts Medical School

Ajay A. Vashisht
University of California - Los Angeles

See next page for additional authors

Follow this and additional works at: https://escholarship.umassmed.edu/pmm_pp

Part of the Developmental Biology Commons, Molecular Biology Commons, and the Molecular Genetics Commons

Repository Citation

https://escholarship.umassmed.edu/pmm_pp/39
Caenorhabditis elegans ALG-1 antimorphic mutations uncover functions for Argonaute in microRNA guide strand selection and passenger strand disposal

Authors
Anna Y. Zinovyeva, Isana Veksler-Lublinsky, Ajay A. Vashisht, James A. Wohlschlegel, and Victor R. Ambros

Keywords
ALG-1, Argonaute, microRNA, microRNA*, passenger

Rights and Permissions
Publisher PDF posted as allowed by the publisher's author rights policy at http://www.pnas.org/site/aboutpnas/authorfaq.xhtml.

This article is available at eScholarship@UMMS: https://escholarship.umassmed.edu/pmm_pp/39
Caenorhabditis elegans ALG-1 antimorphic mutations uncover functions for Argonaute in microRNA guide strand selection and passenger strand disposal

Anna Y. Zinovyeva, Isana Veksler-Lublinsky, Ajay A. Vashisht, James A. Wohlschlegel, and Victor R. Ambros

MicroRNAs are regulators of gene expression whose functions are critical for normal development and physiology. We have previously characterized mutations in a Caenorhabditis elegans microRNA-specific Argonaute ALG-1 (Argonaute-like gene) that are antimorphic [alg-1(anti)], alg-1(anti) mutants have dramatically stronger microRNA-related phenotypes than animals with a complete loss of ALG-1. ALG-1(anti) miRISC (microRNA induced silencing complex) fails to undergo a functional transition from microRNA processing to target repression. To better understand this transition, we characterized the small RNA and protein populations associated with ALG-1(anti) complexes in vivo. We extensively characterized proteins associated with wild-type and mutant ALG-1 and found that the mutant ALG-1(anti) protein fails to interact with numerous miRISC cofactors, including proteins known to be necessary for target repression. In addition, alg-1(anti) mutants dramatically overaccumulated microRNA* (passenger) strands, and immunoprecipitated ALG-1(anti) complexes contained nonstoichiometric yields of mature microRNA and microRNA* strands, with some microRNA* strands present in the ALG-1(anti) Argonaute far in excess of the corresponding mature microRNAs. We show complex and microRNA-specific defects in microRNA strand selection and microRNA* strand disposal. For certain microRNAs (for example mir-58), microRNA guide strand selection by ALG-1(anti) appeared normal, but microRNA* strand release was inefficient. For other microRNAs (such as mir-2), both the microRNA and microRNA* strands were selected as guide by ALG-1(anti), indicating a defect in normal specificity of the strand choice. Our results suggest that wild-type ALG-1 complexes recognize structural features of particular microRNAs in the context of conducting the strand selection and microRNA* ejection steps of miRISC maturation.

Significance

Loading of Argonautes with the correct strand of the premicroRNA duplex and disposal of the other strand are essential steps in microRNA biogenesis. Here we report characterization of the protein and microRNA populations associated with mutant ALG-1 Argonautes that are defective in transitioning from microRNA processing to target repression. We show that mutant Argonaute erroneously associates with the normally discarded microRNA* strands, signifying a role for Argonaute ALG-1 in microRNA strand selection. Accumulation of microRNA* is dependent on the microRNA identity, suggesting that specific microRNA features allow wild-type Argonautes to distinguish among different microRNAs. These findings are relevant to understanding Argonaute roles in microRNA biogenesis and, more broadly, to the functions of microRNAs in development and disease.

Author contributions: A.Y.Z. and V.R.A. designed research; A.Y.Z., A.A.V., and J.A.W. performed research; I.V.-L., A.A.V., and J.A.W. contributed new reagents/analytic tools; A.Y.Z. and I.V.-L. analyzed data; and A.Y.Z., I.V.-L., and V.R.A. wrote the paper.

MicroRNAs are small noncoding RNAs that, as part of a microRNA induced silencing complex (miRISC), bind to complementary sites in the 3′ UTR of target messenger RNAs and cause translational repression or degradation of the target mRNA. microRNAs are predicted to posttranslationally regulate as much as 60% of mammalian protein coding genes (1), making them powerful regulators of physiological and developmental processes. Faithful microRNA biogenesis and programming of miRISC with the appropriate microRNA and accessory protein factors are essential for proper posttranscriptional gene regulation by microRNAs.

Mature ~22-nt single-stranded microRNAs are generated and loaded into specialized Argonaute proteins [ALG-1 (Argonaute-like gene) and ALG-2 in Caenorhabditis elegans] through a series of enzymatic and RNA-protein assembly steps. First, the primary microRNA transcript is processed by the Drosha/Pasha microprocessor complex into a hairpin precursor and exported into the cytoplasm, where the RNAse III enzyme Dicer cleaves the precursor to generate a duplex, consisting of two short strands of RNA, corresponding to the “5p” and “3p” strands of the precursor hairpin. The microRNA duplex is then bound by Argonaute, such that one of the duplex strands (the eventual guide strand, or “miR”) becomes stably associated with Argonaute and the other strand (referred to as the passenger strand, or “miR*” strand) becomes discarded and degraded.

It is generally thought that the microRNA duplex is transferred to Argonaute in the context of a miRISC loading complex (miRLC), which contains Argonaute associated with Dicer (2, 3). The loading of the Argonaute with the duplex is also assisted by chaperone proteins Hsp70/Hsp90 (4–6).

Critical to proper miRISC assembly and subsequent microRNA-mediated gene repression is the accurate and consistent selection of which strand of the 5p/3p duplex will be loaded into Argonaute as the guide microRNA. This process of guide strand selection involves establishing the proper orientation of the duplex within the miRLC, followed by ejection and disposal of the passenger strand (7). For most microRNAs, guide strand selection is highly asymmetric and specific, so that either the 5p or the 3p accumulate in dramatic excess over the other (8, 9). This specificity of guide strand choice has been shown to be associated with certain features of the 5p:3p duplex: (i) the presence and configuration of centrally located mismatches for Drosophila microRNAs (10–12), (ii) the identity of the 5′ nucleotide of the guide microRNA (13–15), and (iii) the relative thermodynamic stability of the two ends of the miR:mir* duplex (16–18), which

www.pnas.org/cgi/doi/10.1073/pnas.1506576112

PNAS | Published online September 8, 2015 | E5271–E5280
has a dramatic impact on strand choice in both flies and mammals. It should be noted that the relative thermodynamic stability of the duplex ends may be a primary determinant of strand selection for perfectly paired duplexes of siRNAs, but may be less important for the mismatched duplexes of most microRNAs (10, 11, 16, 17). Additionally, in C. elegans, microRNAs that produce 5p guides were reported to have similar thermodynamic stabilities of duplex ends as microRNAs that produce 3p guides (9), suggesting that at least in C. elegans other duplex features may be more important for strand selection (9). Features, such as microRNA duplex sequence composition and position of mismatches, could instead be major contributors to strand selection (19–21).

Although guide strand selection appears to be highly asymmetric for most microRNAs, for a small subset of microRNAs substantial quantities of both 5p and 3p strands can accumulate, and in at least some cases there is evidence for functional roles for both strands (22–25). It’s possible that the relative loading of 5p and 3p strands as the guide could be regulated by upstream signals acting via Argonaute or other components of the miRCL. How C. elegans Dicer DCR-1 may contribute mechanistically to the specificity of microRNA loading and guide strand selection is unknown. Mammalian Dicer-associated proteins TRBP/PACT contribute to strand selection (26), and R2D2, a key component of Drosophila miRCL, is dispensable for miR strand selection (27). Interestingly, mammalian Dicer itself may be dispensable for asymmetric miRISC duplex loading, at least under certain circumstances (28, 29). The Argonaute protein itself may have the capacity to distinguish among specific microRNAs to determine the guide/miR vs. passenger/miR* fates of the 5p and 3p strands. Indeed, a very recent report has suggested a direct role for mAGO2 in miR strand choice (30). All these considerations emphasize the importance of acquiring a better understanding of the regulation of microRNA guide strand choice by Argonaute complexes in vivo.

We reported previously novel antimorphic alleles of the C. elegans Argonaute gene alg-1 that broadly impair the functions of many microRNAs, apparently by sequestering microRNAs into immature and inefficient miRCL complexes (31). The mutant ALG-1(anti) proteins exhibit an increased association with the miRCL component Dicer DCR-1 in vivo, and a decreased association with the miRISC effector AIN-1 (ALG-1 interacting protein-1). We proposed that ALG-1(anti)–containing complexes associate with microRNAs, but fail to properly mature from the Dicer-containing miRCLCs to the effector miRISCs, thereby sequestering microRNAs in immature (and nonfunctional) RISC complexes (31). To better understand both the protein and the microRNA dynamics associated with this miRCL-to-miRISC maturation step, we further characterized the ALG-1(anti)–associated proteins and microRNAs using high-throughput proteomics and small RNAseq. Our results support the idea that alg-1(anti) mutants are defective in transitioning from biogenesis (miRCL) to effector (miRISC) status and identify conserved Argonaute-interacting proteins that may be specific to either miRCL or miRISC complexes. Moreover, our small RNAseq analysis shows that alg-1(anti) mutants accumulate miR* strands at levels dramatically greater than the wild-type, indicating that the ALG-1(anti) mutant proteins are defective in microRNA strand selection and miR* strand disposal. We show that the biogenesis of different microRNAs can be impacted very differently by ALG-1(anti). For example, in the case of mir-58, miR* strands are retained by the ALG-1(anti) Argonaute apparently as part of the miR::miR* duplex, suggesting defective miR* strand release. In contrast, for mir-2, the ALG-1(anti) complexes contained far more miR* strands than miR, indicating that mir-2 biogenesis suffers from defects in the strand selection step of miRISC maturation. These findings support a model wherein microRNA biogenesis and miRISC maturation involve critical roles for Argonaute both in recognizing features that define specific microRNAs and in exercising microRNA-specific programs of guide strand selection and miR* strand disposal.

Materials and Methods

C. elegans Culture and Genetics

C. elegans culture was performed using standard nematode growth conditions (32), except the HB101 Escherichia coli strain was used as the food source. All strains were grown at 20 °C. Because of their strong heterochronic phenotypes, alg-1(anti) mutant animals often burst through the vulva during the L4-adult molt (31). Therefore, alg-1(anti) mutations were maintained in a lin-31(n1053) genetic background that impairs vulva development and thereby suppresses the bursting phenotype of alg-1 mutants, while leaving their heterochronous phenotypes intact. The adult-specific col-19::gfp reporter transgene is also present in all of the strains. Therefore, the alg-1(anti) strains used here contain lin-31; col-19::gfp, and in all experiments the wild-type controls were lin-31(n1053); col-19::gfp.

Northern Blotting

Total RNA was isolated from mixed population of animals using TRIzol reagent (Life Technologies), and Northern blots were performed as previously described (33, 34). For oligo probe sequences please see SI Materials and Methods.

FireFly microRNA Quantifications

FirePlex microRNA assays were performed as previously described (31). For experiments involving 2′O-methyl oligonucleotide-mediated pull-down, equivalent fractions of input material and supernatant were tested using the FirePlex assays to quantitatively assess microRNA abundance in the starting material and microRNA depletion from the supernatant by the 2′-O-methylated oligonucleotide.

Small RNA Library Preparation and High-Throughput Sequencing

Small RNA cDNA libraries were prepared as previously described (35) and sequenced on the Illumina GAIIx instrument or the NextSeq500 (for L2 staged samples) using standard manufacturer’s protocols.

Computational Analysis of cDNA Library Sequence Data

Detailed description of cDNA library sequence data analysis can be found in SI Materials and Methods.

ALG-1 Immunoprecipitation and Western Blot Analysis

Detailed description of antibodies, lysate preparation, immunoprecipitation, and Western blot analysis can be found in SI Materials and Methods.

2′O-Methyl Oligo Pull-Downs

The 2′O-methyl oligo pull-downs from extracts of whole worms were performed as described previously (36). For mass spectrometry, each sample contained 20 mg of total protein. Sequences of the 2′-O-methylated, biotinylated oligonucleotides can be found in SI Materials and Methods.

Mass Spectrometry Analysis of ALG-1 Immunopurified Complexes and 2′-O-Methyl Oligonucleotide Pulldown Complexes and Computational Analysis of Proteomic Data

For a detailed description of mass spectrometry analysis and computational analysis of ALG-1 associated proteomes, as well as data analysis of miR-58 and miR-58* associated proteins, see SI Materials and Methods.

Results

alg-1(anti) Mutant Phenotypes Correlate with a Shift in ALG-1–Associated Protein Complexes. We reported previously that ALG-1(anti) protein showed a reduced interaction with the miRISC effector protein AIN-1 compared with wild-type ALG-1, and an increased association with Dicer, DCR-1 (31), suggesting an inability of ALG-1(anti)–containing miRISC to mature from processing complexes to effector complexes. To determine if interactions of ALG-1 with other proteins were affected by the alg-1(anti) mutations, we conducted ALG-1 IP from wild-type and ALG-1(anti) animals followed by MudPIT (Multidimensional Protein Identification Technology) analysis to determine the composition of the associating complexes. The MudPIT data confirmed the results of our previous Western blot experiments, of a reduced ALG-1(anti) association with AIN-1 and an increased association with DCR-1 (Fig. 1A and Dataset S1), and also reveals a dramatic shift in the overall composition of the ALG-1(anti)–associated complexes (Datasets S1–S3). For example, 33 proteins were detected only in the immunoprecipitation (IP) of wild-type ALG-1, with 37 and 43 proteins detected only in the IP of ALG-1(ma192) and ALG-1(ma202), respectively. (Fig. 1B, Fig. S1, and Dataset S2). Consistent with the idea that ALG-1(anti) pre-miRISC complexes are defective in maturation from a
Animals Accumulate miR* Strands and Precursor Hairpin
alg-1(ma202)
and Wild-type ALG-1 and ALG-1(anti) associate with distinct but over-mutants examined:
and
alg-1(anti)
and
animals using anti–ALG-1 antisera, and proteins were quantified by MudPIT proteomics, as described in SI Materials and Methods: (A) Association of ALG-1 with ALG-1(ma192) and ALG-1(ma202) is reduced compared with wild-type ALG-1, whereas association of DCR-1 with ALG-1(ma192) and ALG-1(ma202) is increased compared with wild-type ALG-1. ALG-1 and DCR-1 abundances in IPs are normalized to the abundance of ALG-1. (B) Venn diagram representation of the wild-type ALG-1,–ALG-1(ma192),– and ALG-1(ma202)–associated proteins.

miRISC biogenesis stage to the mature effector miRISC complex, we observed that the ALG-1(anti) IP recovered an increased yield, compared with wild-type, of certain hsp-60 and hsp-70 family proteins and other putative chaperones (Datasets S1–S3), and a reduced yield of several known miRISC effector components, including the poly-A binding proteins PAB-1 and PAB-2 (Dataset S1), which have been shown to play critical roles in target repression (37 and 38; reviewed in ref. 39). This trend was seen across the two alg-1(anti) mutants examined: alg-1(ma192) and alg-1(ma202) (Fig. 1 and Dataset S1), which affect the PIWI and MID domains of the protein, respectively (31). ALG-1(ma192) and ALG-1(ma202) coimmunoprecipitated with overlapping yet nonidentical sets of proteins (Fig. 1, Fig. S1, and Dataset S1), consistent with the hypothesis that the two mutations may not have identical effects on the ability of ALG-1 to interact with various partners.

It should be noted that the proteins coimmunoprecipitated with ALG-1 in these experiments could include factors that directly interact with ALG-1 or that indirectly associate with miRISC by binding to target miRNAs, because our IP experiments were performed in the absence of RNase treatment.

alg-1(anti) Animals Accumulate miR* Strands and Precursor Hairpin Loops.

Given that ALG-1(anti) miRISC exhibits an apparent defect in maturing from a Dicer-containing configuration to the effector miRISC configuration, and considering that miR* strand release is expected to be associated with that maturation process, we tested whether alg-1(anti) mutants accumulate abnormal levels of miR* strands. Indeed, Northern blot analysis reveals a dramatic accumulation of the miR* strands for mir-80, mir-58, and mir-77 in alg-1(anti) mutants (Fig. 2A). Deep-sequencing of small RNA cDNA libraries from wild-type and alg-1(anti) mixed-staged animals confirmed that miR* strand accumulation occurs in alg-1(anti) mutants for most microRNAs, where in many cases the miR* strand increased many-fold in alg-1(anti) compared with wild-type (Fig. 2B). Moreover, alg-1(anti) mutants exhibited an increase (threefold, on average) in accumulation of the loop product of the precursor microRNA processing (Fig. 2C and Fig. S2). MiR* strand accumulation occurred for most microRNAs regardless of the normal wild-type microRNA abundance (Fig. 2 D and E). For some microRNAs, such as mir-2 and mir-244, alg-1(anti) mutants showed an astounding miR*/miR ratio of 20–30, meaning that the passenger strand accumulated to levels 20–30 times greater than its microRNA counterpart (Table 1 and Dataset S4). This finding was in stark contrast to the wild-type, where the miR*/miR ratio was always less than one, and for most microRNAs rarely exceeded 0.02 (Table 1 and Dataset S4). Interestingly, the alg-1(ma202) allele affects miR* accumulation to a greater extent than does alg-1(ma192) (Fig. 2, Table 1, and Dataset S4), with little correlation between the profiles of miR* accumulation between the two alleles (Fig. S3). This finding is not surprising considering that alg-1(ma192) and alg-1(ma202) affect distinct domains of ALG-1.

To assess whether the alg-1(anti) miR*/miR ratio phenotype may be affected by developmental stage, we sequenced small RNA cDNA libraries from second larval-stage (L2) populations of wild-type and alg-1(anti) animals. L2 stage alg-1(anti) mutants were found to accumulate miR* strands many-fold compared with wild-type (Fig. S4 and Dataset S4), similarly to mixed-staged populations. Interestingly, microRNAs that showed a miR*/miR ratio >1 in total RNA samples formed overlapping sets in mutant groups in mixed-stage vs. L2 animals (Fig. S4). The differences observed could reflect differential microRNA tissue specificity and abundance at various stages of development. Importantly, however, a subset of microRNAs exhibited consistent miR*/miR ratios in both L2 and mixed-animals populations (Fig. S4 and Dataset S4).

Immunoprecipitated ALG-1(anti) Complexes Show an Increased Association with mir Strands and Exhibit a Reversed Strand Bias for some microRNAs. Because we observed miR* strand accumulation in the alg-1(anti) animals, we hypothesized that these passenger strands may be bound to the ALG-1(anti) Argonaute. To address this question, we immunoprecipitated ALG-1 from wild-type and mutant mixed-staged animals and cloned and sequenced the associated small RNAs. The immunoprecipitated material was enriched for microRNA populations compared with the input (Fig. 3A) and was correspondingly de-enriched for other RNA populations (Fig. 3B). We found that immunoprecipitated ALG-1(anti) associated with greater quantities of miR* strands compared with the wild-type ALG-1 (Fig. 3C). It is possible that passenger strands, at various PAS levels, may be associated with ALG-1(anti) proteins in a nonstoichiometric manner; therefore, that miR* strand accumulation in ALG-1(anti) complexes could vary across a wide range, and for very highly abundant microRNAs, such as mir-58 (Fig. 3D), miR* strand accumulation in ALG-1(anti) complexes appeared to occur for the majority of microRNAs regardless of their normal abundance (Fig. 3 E and F, Table 1, and Dataset S4), including very highly abundant microRNAs, such as mir-58 (Fig. 3G and Table 1). Depending on the microRNA, the ratio of miR* to miR in ALG-1(anti) complexes varied across a wide range, and for most microRNAs the two strands associated with ALG-1(anti) nonstoichiometrically (Table 1 and Dataset S4). Notably, for some microRNAs, the miR* strand accumulated in ALG-1(anti) complexes to a greater extent than the corresponding miR strand (Table 1). For example, for mir-2, the miR* strand associated with ALG-1(anti) Argonaute. Interestingly, the immunoprecipitated ALG-1(anti) also showed an increased association with loop biproducts of precursor microRNA processing (Fig. 3D), suggesting that ALG-1(anti) miRISCs may be failing to completely eject both miR* and loop products after Dicer cleavage.

The miR* strand accumulation in ALG-1(anti) complexes appeared to reflect that ALG-1(anti) proteins are defective in not only miR* strand disposal, but also in the normal specificity of the miR guide strand choice (Fig. 4). For some microRNAs, the miR* strand accumulation in excess to miR strand seem to reflect that ALG-1(anti) proteins are defective in not only miR* strand disposal, but also in the normal specificity of the miR guide strand choice (Fig. 4A and Table 1).
miRISC components should be recovered both by anti-miR pull-down and by anti-miR* pull-down. To distinguish between these models for mir-58 family microRNAs, we examined complexes recovered from wild-type and alg-1(ma192) lysates by 2′-O-methyl oligo-mediated pull-down followed by MudPIT analysis of the associated complexes. We observed that known miRISC components were recovered by pull-down using an anti-miR-58 oligo but were not detected after pull-down of miR-58* (Fig. 4B). Both the miR-58 and miR-58* and three members of the mir-58 family microRNAs were efficiently depleted from the extract by 2′-O-methyl pull-down (Fig. 4C), presumably because of the sequence homology between the related microRNAs (Fig. 4D). Therefore, we do not believe that the low signals for miRISC proteins in the anti-miR-58* pull-down (Fig. 4B) can be explained by inefficient base pairing of passenger with anti-miR-58* oligo. Rather, we interpret this result to support model I, where miR-58 family microRNA passenger strand accumulation reflects retention of the passenger strand in duplexes with an ALG-loaded guide strand. This explains the recovery of both miR-58 and miR-58 by IP of ALG-1(anti) (Fig. 4E and G) and the asymmetry of miRISC component recovery in pull-down of miR-58 vs. miR-58* (Fig. 4B and H). We believe that the efficient recovery of both strands by oligo pull-down reflects efficient competition of the 2′-O-methyl oligos for their cognate microRNA strands in extracts under the condition of the pull-down experiment.

Incidentally, Western blot analysis of the material recovered by the 2′-O-methyl pull-down of mir-58 family guide strands (Fig. 4F) is qualitatively consistent with the MudPIT proteomic analysis of the same samples (Fig. 4B). Both the Western blot and MudPIT showed reduced association of ALG-1(anti) with mir-58 family microRNAs. However, the signal for ALG-1(anti) appeared more reduced as detected by the Western blot compared with the wild-type than the MudPIT data indicate (Fig. 4B and F and Fig. S5). This finding could in part reflect the fact that the protein abundances of the miRISC components and other factors, as determined by MudPIT analysis, were normalized to the amount of the microRNA present in the starting material, as well as the efficiency of the pull-down (Fig. 4B). Furthermore, if ALG-1 and ALG-2 protein yields (Fig. 4B) were recalculated using only peptides that were unique to each Argonaute (discarding the shared peptides; see Materials and Methods), the difference between ALG-1 abundance in wild-type vs. ALG-1(anti) animal pull-downs increases from twofold to sixfold (Fig. 4B), thus becoming more consistent with the Western blot data. However, it remains possible that ALG-1(anti) detection on a Western blot by the anti-ALG-1 antibody is hampered for unknown technical reasons. Another MudPIT/Western blot discrepancy, the presence of ALG-1 in the miR-58*–associated material as detected by Western blotting in wild-type (Fig. 4F), could be a result of the more stringent washing of the 2′-O-methyl pull-down material in preparation for the MudPIT analysis.

Curiously, although the miR-58 family miR strand pull-down from alg-1(anti) animals yielded a decreased recovery of ALG-1 compared with the wild-type ALG-1, an increased amount of ALG-2 was recovered, in addition to the RDE-1 Argonaute (Fig. 4B and Fig. S5). This finding suggests a possible reapportioning of some of the mir-58 family microRNAs in alg-1(anti) mutants that normally associate with ALG-1 into ALG-2 and perhaps other Argonautes. Consistent with this scenario, we did not detect a decrease in association of mir-58 family microRNAs with the miRISC effector protein AIN-1 (Fig. 4B and F and Fig. S5), suggesting that at least a portion of the microRNAs must be in...
miRISCs that contain AIN-1. The observed AIN-1 and DCR-1 signal (Fig. 4F) is likely to at least in part reflect complexes of miR-58 with ALG-2. Similar observations were made for the mir-52 family microRNA pull-downs (Fig. S6). Interestingly, mir-52 family microRNA association with AIN-2 was not observed in alg-1(ma192) mutant animals (Fig. 4F), suggesting that AIN-2 may differ from its homolog AIN-1 with respect to its interaction with Argonautes ALG-1 and ALG-2.

Table 1. microRNAs classified according to their miR*/miR ratio in input or ALG-1 IPs from alg-1(anti) mutants and wild-type

<table>
<thead>
<tr>
<th>Class</th>
<th>mir</th>
<th>Wild-type Average microRNA abundance (ppm)</th>
<th>Wild-type Average mir*/miR ratio</th>
<th>alg-1(ma192) Average microRNA abundance (ppm)</th>
<th>alg-1(ma192) Average mir*/miR ratio</th>
<th>alg-1(ma202) Average microRNA abundance (ppm)</th>
<th>alg-1(ma202) Average mir*/miR ratio</th>
<th>Fold-change in miR*/miR ratios between ALG-1(ma202) IP and ALG-1(wt) IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class III: Accumulated</td>
<td>mir-2</td>
<td>518 966 0.091 0.002</td>
<td>1,308 3,748 3.520 0.484</td>
<td>140 442 30.950 4.261</td>
</tr>
<tr>
<td>Class IV: Unaffected</td>
<td>mir-59</td>
<td>3,623 4,019 0.005 0.020</td>
<td>3,073 6,598 0.216 0.112</td>
<td>1,060 1,407 5.593 2.496</td>
</tr>
</tbody>
</table>

Class I: Asymmetric. MicroRNAs that had a miR*/miR ratio > 1 in ALG-1(ma202) IP. **Class II:** Asymmetric in input. MicroRNAs that had a miR*/miR ratio > 1 in input for the ALG-1(ma202) IP. **Class III:** Accumulated. 20 microRNAs representative of the microRNAs whose miR*/miR ratio was significantly increased in ALG-1(ma202) IP compared with wild-type ALG-1 IP. See Dataset S4 for a complete list. **Class IV:** Unaffected. MicroRNAs whose miR*/miR ratio changed ≤4 between wild-type ALG-1 IP and ALG-1(ma202) IP, ppm, parts per million.
To understand the basis for miR-2* strand accumulation (Figs. 5G, 4A, and 5A) we conducted 2'-O-methyl pull-down experiments from wild-type and alg-1(anti) animals using oligos complementary to miR-2 and miR-2* strands. Pull-down against miR-2 recovered ALG-1 protein from both wild-type and alg-1(anti) animals (Fig. 5B). Surprisingly, we found that pull-downs with an oligo complementary to the miR-2* also recovered ALG-1(anti) protein (Fig. 5B). This finding suggests that at least a subpopulation of miR-2* strands are associated with the mutant ALG-1(anti) as single strands, indicating that ALG-1(anti) is defective in proper strand selection for miR-2 (model II in Fig. 4A). This cannot be the only defect in miR-2*:ALG-1(anti) association, because the quantity of ALG-1(anti) detected in the anti-miR-2* pull-down is less than what is associated with the miR-2 strand, even though miR-2* is in excess to miR-2 (Fig. 5A). This finding indicates that perhaps miR-2* strand accumulation in ALG-1(anti) complexes reflects a combination of two defects: its inefficient ejection from the duplex (model I in Fig. 4A) as well as erroneous miR-2* incorporation into the ALG-1(anti) Argonaute as guide (Fig. 4A, model II, and Fig. 5C and D). However, miR-2 complementary 2'-O-methylated oligo cross-reacts with other members of the miR-2 family, given the sequence overlaps between family members, whereas miR-2* complementary oligo is expected to specifically recover miR-2*. These differential specificities of oligos may also contribute to the differing amount of ALG-1 observed as associated with both the miR-2 family miRNAs and miR-2* alone (Fig. 5A and B).

The Set of microRNAs Exhibiting Grossly Abnormal miR* Loading by ALG-1(anti) Are Not Easily Distinguished by Features of Their microRNA Duplex Structures. None of class I asymmetric microRNAs (Table 1) are particularly enriched (relative to the other classes; see Table 1) for microRNAs that preferentially associate with ALG-1 compared with ALG-2 (40), suggesting that a simple bias of microRNAs to preferentially load into one Argonaute vs. another cannot explain the asymmetric miR* loading into ALG-1(anti) (Fig. 4A). Class II microRNAs often exhibit increased ALG-1(anti) association when compared with ALG-2, but on average, via a hypothetical compensatory regulation of ALG-2. We increased in ALG-1(anti) compared with ALG-2, with ALG-2 protein abundance because of a lack of ALG-2 increased in ALG-2, and this does not affect ALG-1(anti) Argonaute association with a set of additional proteins known to be required for microRNA target translational repression and target degradation, including poly(A)-binding proteins PAB-1 and PAB-2. At the same time, ALG-1(ma192) IPs contained an increase in heat-shock family proteins that have been previously shown to associate in the loading of the Argonautes (4, 6). Therefore, this observation further supports our model that ALG-1(anti)-containing complexes are stalled in a pre-miRISC form, perhaps as the miR-2* is conserved with AIN-1, than does wild-type ALG-1 (Fig. 1B and Dataset S1). This shift includes the detection of protein populations associated with ALG-1(anti) that were not detected in wild-type ALG-1 complexes, and an absence of proteins that were detected only in wild-type complexes. This finding is consistent with the model that both ALG-1(ma192) and ALG-1(ma202)-containing complexes are defective in properly maturing into functional miRISC.

Our MudPIT data support and expand our previous findings from Western blot analyses of Dicer and AIN-1 association with ALG-1(anti) (31). By MudPIT, ALG-1(anti) are observed to associate more with DCR-1 and less with AIN-1, than does wild-type ALG-1 (Fig. 1B and Dataset S1). This shift includes the differential distribution of miR-2* also recovered in wild-type ALG-1 complexes, and an absence of proteins that were detected only in wild-type complexes. This finding is consistent with the model that both ALG-1(ma192) and ALG-1(ma202)-containing complexes are defective in properly maturing into functional miRISC. These MudPIT data support and expand our previous findings from Western blot analyses of Dicer and AIN-1 association with ALG-1(anti) (31). By MudPIT, ALG-1(anti) are observed to associate more with DCR-1 and less with AIN-1, than does wild-type ALG-1 (Fig. 1B and Dataset S1). This shift includes the detection of protein populations associated with ALG-1(anti) that were not detected in wild-type ALG-1 complexes, and an absence of proteins that were detected only in wild-type complexes. This finding is consistent with the model that both ALG-1(ma192) and ALG-1(ma202)-containing complexes are defective in properly maturing into functional miRISC. These MudPIT data support and expand our previous findings from Western blot analyses of Dicer and AIN-1 association with ALG-1(anti) (31). By MudPIT, ALG-1(anti) are observed to associate more with DCR-1 and less with AIN-1, than does wild-type ALG-1 (Fig. 1B and Dataset S1). This shift includes the detection of protein populations associated with ALG-1(anti) that were not detected in wild-type ALG-1 complexes, and an absence of proteins that were detected only in wild-type complexes. This finding is consistent with the model that both ALG-1(ma192) and ALG-1(ma202)-containing complexes are defective in properly maturing into functional miRISC. These MudPIT data support and expand our previous findings from Western blot analyses of Dicer and AIN-1 association with ALG-1(anti) (31). By MudPIT, ALG-1(anti) are observed to associate more with DCR-1 and less with AIN-1, than does wild-type ALG-1 (Fig. 1B and Dataset S1). This shift includes the detection of protein populations associated with ALG-1(anti) that were not detected in wild-type ALG-1 complexes, and an absence of proteins that were detected only in wild-type complexes. This finding is consistent with the model that both ALG-1(ma192) and ALG-1(ma202)-containing complexes are defective in properly maturing into functional miRISC. These MudPIT data support and expand our previous findings from Western blot analyses of Dicer and AIN-1 association with ALG-1(anti) (31). By MudPIT, ALG-1(anti) are observed to associate more with DCR-1 and less with AIN-1, than does wild-type ALG-1 (Fig. 1B and Dataset S1). This shift includes the detection of protein populations associated with ALG-1(anti) that were not detected in wild-type ALG-1 complexes, and an absence of proteins that were detected only in wild-type complexes. This finding is consistent with the model that both ALG-1(ma192) and ALG-1(ma202)-containing complexes are defective in properly maturing into functional miRISC. These MudPIT data support and expand our previous findings from Western blot analyses of Dicer and AIN-1 association with ALG-1(anti) (31). By MudPIT, ALG-1(anti) are observed to associate more with DCR-1 and less with AIN-1, than does wild-type ALG-1 (Fig. 1B and Dataset S1). This shift includes the detection of protein populations associated with ALG-1(anti) that were not detected in wild-type ALG-1 complexes, and an absence of proteins that were detected only in wild-type complexes. This finding is consistent with the model that both ALG-1(ma192) and ALG-1(ma202)-containing complexes are defective in properly maturing into functional miRISC. These MudPIT data support and expand our previous findings from Western blot analyses of Dicer and AIN-1 association with ALG-1(anti) (31). By MudPIT, ALG-1(anti) are observed to associate more with DCR-1 and less with AIN-1, than does wild-type ALG-1 (Fig. 1B and Dataset S1). This shift includes the detection of protein populations associated with ALG-1(anti) that were not detected in wild-type ALG-1 complexes, and an absence of proteins that were detected only in wild-type complexes. This finding is consistent with the model that both ALG-1(ma192) and ALG-1(ma202)-containing complexes are defective in properly maturing into functional miRISC.

discussion
Here we report detailed molecular characterizations of the previously genetically described antimorphic alg-1 mutations (31). These mutations were shown to have broad effects on microRNA function and are more detrimental than complete loss of ALG-1, yet do not significantly affect Dicer processing of microRNA precursors or mature guide microRNA accumulation (31). The strong phenotypes caused by ALG-1(anti) could be explained by the observation that ALG-1(anti) complexes contain microRNAs, but poorly associate with the miRISC effector AIN-1, and hence sequester microRNAs in ineffective complexes (31). Previous findings also showed that ALG-1(anti) complexes are more enriched for Dicer than are wild-type ALG-1 complexes, further indicating that ALG-1(anti) proteins could be defective in transferring miR-2 from miR-2* and miR-2* also does not explain the differential incorporation of some miR* strands into ALG-1(anti) (Fig. 5E and F). Similarly, our analysis of differences between duplex seed energies on the 5' end of the guide vs. 5' end of the miR* (ΔAG seed) did not distinguish the asymmetrically loaded microRNAs from the other classes (Fig. 5G).

microRNAs Can Shift from ALG-1 to Other Argonautes in alg-1(anti) Animals. MudPIT analysis of complexes recovered by oligonucleotide-mediated pull-down of mir-58 family microRNAs from alg-1(anti) worm extracts revealed an increase in the amount of ALG-2 recovered (Fig. 4B). This increase could reflect an up-regulation of ALG-2 protein abundance in the alg-1(anti) background (for example, via a hypothetical compensatory regulation of ALG-2). We showed previously that alg-2 mRNA levels were not detectably increased in alg-1(anti) animals, but we were not able to determine ALG-2 protein abundance because of a lack of ALG-2-specific antiserum (31). Alternatively, inability of ALG-1(anti) Argonautes to properly load miR-58 duplex from ALG-1(anti) and subsequent take up by the available microRNA competent Argonautes such as ALG-2 and RDE-1, according to a previously proposed “duplex sorting” model (11).

Interestingly, oligonucleotide-mediated pull-down of the miR-58 family guide also showed a relatively minor, but nevertheless
striking shift of these microRNAs to RDE-1 in alg-1(anti) mutants (Fig. 4B and Fig. S5). RDE-1 has been previously shown to associate with multiple classes of small RNAs, including microRNAs (41). It is possible that RDE-1 may function as a natural reservoir for microRNAs that are, under certain circumstances, excluded from ALG-1 and ALG-2. It is worth noting that if there were a broad shift in microRNAs from ALG-1(anti) to other Argonauts, then that could result in a general mitigation of the phenotype. Pull-down of miR-2* from alg-1(ma202) extracts yielded ALG-1, as detected by Western Blot (Fig. 5). Thus, for at least some microRNAs (class I in Table 1), ALG-1(anti) complexes fail to execute the proper specificity of guide strand choice.

ALG-1(anti) Causes Defects in Guide Strand Choice and Passenger Strand Disposal. Ordinarily, for the majority of microRNA precursors, one strand of the duplex is specifically selected to associate with Argonaute in the guide strand configuration, whereas the other strand is ejected and subsequently degraded. Therefore, in the wild-type, the miR*/miR ratio is exceedingly small for most microRNAs, with few exceptions, such as mir-30 in mammals (42) and mir-47 in *C. elegans* (Dataset S4). A striking aspect of our findings is that the usual asymmetry of miR vs. miR* accumulation is dramatically altered in ALG-1(anti) complexes (Table 1). In ALG-1(ma202) complexes, 75 microRNAs exhibited a 4- to ~2,000-fold increase in the ratio of miR* to miR compared with the wild-type (Table 1 and Dataset S4).

Importantly, for certain microRNAs, the miR* strand accumulated in ALG-1(anti) complexes to levels in excess to their miR strand counterparts [for example, miR-2* in alg-1(ma202)]. In such cases of miR* excess, at least a portion of the miR*, must be loaded into ALG-1(anti) in the guide strand configuration. This interpretation is supported by our finding that oligonucleotide pull-down of miR-2* from alg-1(ma202) extracts yielded ALG-1, as detected by Western Blot (Fig. 5). Thus, for at least some microRNAs (class I in Table 1), ALG-1(anti) complexes fail to execute the proper specificity of guide strand choice.

For those microRNAs whose miR* strand did accumulate in ALG-1(anti) complexes, but not in excess to the microRNA strand (classes II and III in Table 1), the underlying defect could be a defective guide strand choice selection, although less potent than for the class I microRNAs. Alternatively, for some of these class II/III microRNAs, miR* strand accumulation could reflect simply a miR* strand release defect in the context of normal strand choice. Pull-down of miR-58* strands in alg-1(anti) did not appreciably recover ALG-1, ALG-2, AIN-1/2, or DCR-1 (Fig. 4B and F), whereas pull-down of the miR-58 strand did recover these known Argonaute complex components (Fig. 4B and F). Thus, unlike miR-2, where oligonucleotide pull-down of the miR* strand did yield ALG-1 (Fig. 5), the miR-58* strand seems to be not directly associated with ALG-1 but in a duplex
and Table 1 (Materials and Methods). (C) Efficiency of the miR-58 and miR-58* strand pull-downs presented as percent microRNA depleted from the supernatant in samples shown in B. (D) Sequence alignments between members of the mir-58 family of microRNAs. (E) miR-58 family microRNA and miR* abundances in wild-type ALG-1 and ALG-1 (anti) IP. (F) Western blot analysis of miR-58 microRNA family pull-downs from wild-type animals showing association of ALG-1, DCR-1, and AIN-1 with miR-58 family microRNAs, (+, scrambled oligo control; S8, oligo against miR-58; S8*, oligo against miR-58*). (G and H) Summary model for the miR-58 strand and related proteins accumulation as observed in alg-1(anti) mutants by (G) ALG-1 (anti) IP and (H) miR-58 and miR-58* 2′O-methyl pull-downs (m, miR; m*, miR*).

Fig. 4. 2′O-methyl oligonucleotide pull-downs from wild-type and alg-1(anti) mutants suggest that miR-58* accumulation in ALG-1 is a result of failure of ALG-1(anti) to release it from the duplex. (A) Two models for miR* microRNA accumulation in alg-1(anti) mutant animals. Model I: ALG-1(anti) complexes retain both microRNA strands primarily in a bound duplex. Model II: ALG-1(anti) complexes contain single strands of miR and miR* microRNAs because of a loss in the ability of the protein to differentiate between the two strands. Predictions of the outcome for IP and pull-down experiments are shown directly below each model. (B) Protein yield of miRISC components and other small RNA related factors from mir-58 family microRNA pull-down as determined by MudPIT proteomics and normalized to the amount of RNA depleted by 2′O-methyl oligo pull-down. (C) ALG-1- and ALG-2-dependent miR*-microRNA abundance in ALG-1 IP (ppm). (D) miR-58* and miR-58* 2′O-methyl pull-downs (m, miR; m*, miR*).

with ALG-bound miR-58 microRNA. This finding indicates that for miR-58 and likely many other microRNAs exhibiting miR* strand accumulation, ALG-1(anti) causes a miR* strand release defect (Fig. 4A, model I).

Defective passenger strand release by ALG-1(anti) suggests an active role for ALG-1 in the passenger release process. This role may represent a direct activity of ALG-1, such as cleavage of passenger strand by ALG-1 slicer activity. However, recombinant ALG-1(anti) protein seems to retain slicer activity by in vitro assays (31). Moreover, many microRNA precursors contain mismatched bases in the center of their precursor helix, precluding passenger strand slicing (43). Thus, excess miR* accumulation in ALG-1(anti) Argonautes likely reflects passenger release by slicing-independent mechanisms.

It is curious that for certain microRNAs we observed high levels of miR* strands in whole-worm extracts, yet the miR* strands of those particular microRNAs were not efficiently recovered by in ALG-1 immunoprecipitation (Fig. 4B and Table 1). This finding suggests that many miR* strands are either not stably associated with ALG-1 under the conditions of IP, or they are associated with other complexes of unknown composition.

Throughout our characterizations of the alg-1(anti) mutants we observed quantitative and qualitative differences between alg-1(1ma202) and alg-1(1ma202) alleles in how these two mutant ALG-1 proteins affect miR* strand accumulation for specific microRNAs. alg-1(1ma202) animals appear to accumulate miR* strands to a greater degree than do alg-1(1ma202) mutants, both in total RNA samples and in ALG-1 IP (Figs. 2 and 3, Table 1, and Fig. S3). alg-1(1ma202) and alg-1(1ma202) alleles affect two distinct domains of ALG-1 (PIWI and MID, respectively) and may differentially affect ALG-1 interactions with specific microRNAs and protein cofactors. It is intriguing to consider that the two mutated forms of
ALG-1 Argonaute both disrupt miR/LC to miRISC maturation but impose distinct effects on the ability of ALG-1 to interact with specific microRNA and protein cofactors.

Distinct Effects of ALG-1(anti) on Different microRNAs. Our data indicate at least two distinct effects of ALG-1(anti) on microRNA biogenesis that are exhibited to varying degrees by different microRNAs: loss of specificity of guide strand selection (for example, mir-2) (Table 1), and defective passenger strand release (for example: mir-58) (Table 1). At this point we cannot estimate how many microRNAs in classes I and II/III could be defective in only passenger strand release (such as mir-58), or only guide strand selection, or could be affected by compound defects in both processes.

We speculate that differing effects of ALG-1(anti) on miR strand selection and miR* disposal for distinct microRNAs could reflect how ALG-1 recognizes sequence-specific or duplex structure-specific features characteristic of each pre-microRNA in the context of miR/LC. Presumably, for all microRNAs, guide strand selection involves a sampling by the miR/LC of both orientations of the duplex (with either miR or miR* sampled as the potential guide), with the specificity of the guide strand choice determined by mechanisms that couple passenger release selectively to a specific duplex orientation (Fig. 6). There is evidence that microRNA passenger strand selection by Argonaute may involve conformational changes in the Argonuc:pre-miR complex that could be triggered by structural features characteristic of one duplex orientation, and that subsequently favor passenger strand release (19). It is possible that ALG-1(anti) mutant proteins are primarily defective in key miR/LC conformational changes that couple miR* or passenger strand release to a specific duplex orientation for specific microRNAs. According to this model, microRNAs, such as mir-2 and other class I asymmetric microRNAs, correspond to cases where strand selection depends on a conformational change that is defective in ALG-1(anti). On the other hand, microRNAs (such as mir-58) that display proper strand selection in alg-1(anti) mutants, but poor miR* strand release, are those for which strand selection is determined before the defective conformational change.

Interestingly, the class of asymmetric microRNAs, whose miR* strands were more abundant in the ALG-1(anti) than their miR strands (class I in Table 1), is enriched for microRNAs with paired duplex ends at both the 5’ and the 3’ ends (Fig. S7E), with all of the asymmetric microRNA duplexes being paired at the 3’ end. At the same time, the majority of the unaffected microRNAs had an unpaired 3’ nucleotide (Fig. S7E). This observation is intriguing but not predictive of asymmetric loading, as that difference alone cannot explain the disparity between miR* Argonaute loading for class I microRNAs compared with all other microRNAs. It is possible that our inability to identify microRNA duplex features as predictors of asymmetric loading into ALG-1(anti) was hampered by the small sample size of class I microRNAs in this study (Table 1). Therefore, we do not preclude the possibility that certain features or some combination thereof may in fact influence strand loading in alg-1(anti) mutants. However, our data raise an intriguing possibility that additional microRNA-extrinsic mechanisms may help determine which microRNA strand becomes loaded and functional.

It’s interesting to consider that different rules governing guide strand selection and passenger disposal may apply to different
microRNAs. Given that the difference between protein cofactors associated with ALG-1 in wild-type and alg-1(ani) mutant animals, one attractive possibility is that Argonaute cofactors may be what imparts the context/microRNA specificity of strand selection and allows for modulation of strand choice (23, 44). We suggest that duplex orientation is sampled by the miRLC and that loading of the duplex into the Argonaute in correct orientation depends on several properties, both intrinsic and extrinsic to the microRNA duplex itself. We propose that features of the duplex structure, conformation of the Argonaute protein itself, and the presence of microRNA-specific protein cofactors (shown in green and purple in Fig. 6) may all be important for the appropriate orientation of the duplex during miRISC loading.

Given the evidence that passenger strand may be functional in certain circumstances (23, 44-46), the ability to modulate the choice between guide and passenger strands must be highly regulated. Such regulation could be indispensable in developmental and pathological contexts in which the specificity of guide/passenger strand selection is critical. Further study is required to develop a fuller understanding of how microRNA strand choice is executed and regulated by Argonautes and their associated cofactors.

ACKNOWLEDGMENTS. We thank the members of the V.R.A. and the Mello laboratories for helpful discussions, especially Wefeng Gu for help with initial high-throughput sequencing data analysis, and the University of Massachusetts Medical School Molecular Biology Core for performing the high-throughput sequencing. This work was supported in part by a T32 Training Grant (to A.Y.Z.); a Leukemia and Lymphoma Society postdoctoral fellowship (to I.V.-L.); and National Institutes of Health Grants R01GM089779 (to J.A.W.) and R01GM34028 (to V.R.A.).