F-box protein FBXO31 directs degradation of MDM2 to facilitate p53-mediated growth arrest following genotoxic stress

Sunil K. Malonia
University of Massachusetts Medical School

Parul Dutta
University of Pune

Manas Kumar Santra
University of Pune

See next page for additional authors

Follow this and additional works at: https://escholarship.umassmed.edu/mccb_pubs

Part of the [Cancer Biology Commons](https://escholarship.umassmed.edu/mccb_pubs), [Cell Biology Commons](https://escholarship.umassmed.edu/mccb_pubs), [Molecular Biology Commons](https://escholarship.umassmed.edu/mccb_pubs), and the [Molecular Genetics Commons](https://escholarship.umassmed.edu/mccb_pubs)

Repository Citation

Malonia, Sunil K.; Dutta, Parul; Santra, Manas Kumar; and Green, Michael R., "F-box protein FBXO31 directs degradation of MDM2 to facilitate p53-mediated growth arrest following genotoxic stress" (2015). *Molecular, Cell and Cancer Biology Publications*. 28. https://escholarship.umassmed.edu/mccb_pubs/28

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Molecular, Cell and Cancer Biology Publications by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
F-box protein FBXO31 directs degradation of MDM2 to facilitate p53-mediated growth arrest following genotoxic stress

Authors
Sunil K. Malonia, Parul Dutta, Manas Kumar Santra, and Michael R. Green

Keywords
DNA damage, FBXO31, MDM2, p53, tumor suppressor

Rights and Permissions
Publisher PDF posted as allowed by the publisher's author rights policy at http://www.pnas.org/site/aboutpnas/authorfaq.xhtml.

This article is available at eScholarship@UMMS: https://escholarship.umassmed.edu/mccb_pubs/28
F-box protein FBXO31 directs degradation of MDM2 to facilitate p53-mediated growth arrest following genotoxic stress

Sunil K. Malonia¹,², Parul Duttaᵇ, Manas Kumar Santraᵇ,¹,², and Michael R. Greenᵃ,¹

¹Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605; ²National Centre for Cell Science, University of Pune Campus, Ganeshkhind, Pune, Maharashtra 411007, India; and ³Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605

Contributed by Michael R. Green, June 4, 2015 (sent for review May 28, 2015; reviewed by Sanjeev Das and Kevin Struhl)

The tumor suppressor p53 plays a critical role in maintaining genomic stability. In response to genotoxic stress, p53 levels increase and induce cell-cycle arrest, senescence, or apoptosis, thereby preventing replication of damaged DNA. In unstressed cells, p53 is maintained at a low level. The major negative regulator of p53 is MDM2, an E3 ubiquitin ligase that directly interacts with p53 and promotes its polyubiquitination, leading to the subsequent destruction of p53 by the 26S proteasome. Following DNA damage, MDM2 is degraded rapidly, resulting in increased p53 stability. Because of the important role of MDM2 in modulating p53 function, it is critical to understand how MDM2 levels are regulated. Here we show that the F-box protein FBXO31, a candidate tumor suppressor encoded in 16q24.3 for which there is loss of heterozygosity in various solid tumors, is responsible for promoting MDM2 degradation. Following genotoxic stress, FBXO31 is phosphorylated by the DNA damage serine/threonine kinase ATM, resulting in increased levels of FBXO31. FBXO31 then interacts with and directs the degradation of MDM2, which is dependent on phosphorylation of MDM2 by ATM. FBXO31-mediated loss of MDM2 leads to elevated levels of p53, resulting in growth arrest. In cells depleted of FBXO31, MDM2 is not degraded and p53 levels do not increase following genotoxic stress. Thus, FBXO31 is essential for the classic robust increase in p53 levels following DNA damage.

Significance

The tumor suppressor protein p53 plays a critical role in protecting humans from cancer. In response to cellular stresses, such as DNA damage, p53 levels increase and induce a variety of protective biological responses. In unstressed cells, p53 is maintained at a low level by MDM2, a protein that interacts with p53 and promotes its degradation. Following DNA damage, MDM2 is degraded rapidly, resulting in increased p53 levels. Because of the essential role of MDM2 in modulating p53 function, it is critical to understand how MDM2 levels are regulated. Here we show that, following DNA damage, the F-box protein FBXO31, a potential tumor suppressor, is responsible for promoting MDM2 degradation and therefore is essential for the increase in p53 levels.
FBXO31 is required for decreased MDM2 and increased p53 levels following DNA damage. (A and B) Immunoblot monitoring MDM2 [using a monoclonal (AB1) or polyclonal (N20) antibody], p53, FBXO31, phosphorylated ATM (p-ATM) (1981), and total ATM (t-ATM) in MCF7 cells expressing NS or FBXO31 shRNA and treated in the presence (45 or 90 min) or absence (0 min) of camptothecin (A) or γ-irradiation (IR) (B). α-tubulin (TUBA) was monitored as loading control. (C) Immunoblot monitoring Flag-MDM2, p53, and FBXO31 in MCF7 cells expressing Flag-MDM2 and NS or FBXO31 shRNA and treated in the presence or absence of camptothecin. GFP, expressed from a cotransfected plasmid, was used as a transfection and loading control. (D) Mitotic index analysis of HCT116 cells expressing NS or FBXO31 shRNA. Error bars indicate SD. *P ≤ 0.05, **P ≤ 0.01.

FBXO31 Directs Degradation of MDM2. The results described above suggested that FBXO31 directly mediates degradation of MDM2, and we performed a series of experiments to confirm this possibility. First, we measured the half-life of endogenous MDM2 using a cycloheximide-chase/immunoblot assay. The results show that the half-life of MDM2 was substantially longer in FBXO31 KD MCF7 cells than in control cells (Fig. 2A and S2A and B). Similar results were obtained in IMR90 cells (Fig. S2C).

We next asked whether ectopic expression of FBXO31 would result in the degradation of endogenous MDM2. As was consistent with previous results (17), we found that ectopic expression of FBXO31 in MCF7 cells promoted growth arrest, as evidenced by reduced proliferation (Fig. S3A) and decreased DNA replication (BrdU incorporation) (Fig. S3B), and induced senescence, as evidenced by positive staining for senescence-associated β-gal (Fig. S3C). The immunoblot of Fig. 2B shows that ectopic expression of FBXO31 resulted in decreased levels of MDM2, which, as expected, were accompanied by increased levels of p53 and p21. Notably, previous studies have shown that increased p21 levels are sufficient to induce growth arrest and senescence (18, 19). In contrast to wild-type FBXO31, ectopic expression of an FBXO31 derivative in which the F-box had been deleted (FBXO31ΔF) (17) failed to result in decreased levels of MDM2 or increased levels of p53 and p21.

Consistent with our finding that FBXO31 affected MDM2 stability, the addition of the proteasome inhibitor lactacystin blocked the ability of ectopically expressed FBXO31 to decrease MDM2 levels (Fig. 2C). In addition, quantitative RT-PCR (qRT-PCR) analysis showed that MDM2 mRNA levels were unaffected by ectopic FBXO31 expression or after FBXO31 knockdown (Fig. S4A). Moreover, ectopic expression of FBXO31, but not FBXO31ΔF, substantially reduced the half-life of MDM2 in MCF7 cells (Fig. 2D and S4B) and in 293T cells (Fig. S4C).

Finally, to confirm the antagonistic roles of MDM2 and FBXO31 on p53 levels, we performed reconstitution experiments in homozygous knockout mouse embryo fibroblasts (MEFs) lacking MDM2 and p53 (Mdm2−/−, p53−/− MEFs). We ectopically expressed GFP-p53 alone, GFP-p53 and Flag-MDM2, or GFP-p53, Flag-MDM2, and myc-FBXO31 and measured p53 protein levels by immunoblotting. The results in Fig. 2E show, as expected, a reduction in p53 levels in the presence of MDM2. Notably, expression of FBXO31 led to decreased levels of MDM2 and a restoration of p53 levels. To confirm that these effects resulted from alterations of protein stability, the half-lives of p53 and MDM2 were measured by a cycloheximide-chase/immunoblot assay. The results in Fig. 2F show that the half-life of p53 was markedly reduced in the presence of MDM2 and that expression of FBXO31 led to a large decrease in the
F-box proteins impart subcellular specificity to the SCF ubiquitin ligan machinery by interacting directly with their protein targets (8). To test whether FBXO31 and MDM2 interact, we performed a series of coimmunoprecipitation experiments. First, MCF7 cells were stably transduced with a retrovirus expressing myc-tagged FBXO31, and FBXO31 was immunoprecipitated using an anti-myc antibody. Fig. 3A shows the presence of MDM2 in the FBXO31 immunoprecipitate, which was increased by lactacystin addition. The reciprocal coimmunoprecipitation experiment showed the presence of myc-FBXO31 in the MDM2 immunoprecipitate.

The FBXO31–MDM2 Interaction Is Dependent on Phosphorylation of MDM2 by ATM. Recognition by F-box proteins typically requires phosphorylation of the substrate, which serves as a signal for ubiquitin-dependent destruction (8). To test whether FBXO31 and MDM2 interact, we performed a series of coimmunoprecipitation experiments. First, MCF7 cells were stably transduced with a retrovirus expressing myc-tagged FBXO31, and FBXO31 was immunoprecipitated using an anti-myc antibody. Fig. 3A shows the presence of MDM2 in the FBXO31 immunoprecipitate, which was increased by lactacystin addition. The reciprocal coimmunoprecipitation experiment showed the presence of myc-FBXO31 in the MDM2 immunoprecipitate.

FBXO31 Interacts Directly with MDM2. F-box proteins impart subcellular specificity to the SCF ubiquitin ligan machinery by interacting directly with their protein targets (8). To test whether FBXO31 and MDM2 interact, we performed a series of coimmunoprecipitation experiments. First, MCF7 cells were stably transduced with a retrovirus expressing myc-tagged FBXO31, and FBXO31 was immunoprecipitated using an anti-myc antibody. Fig. 3A shows the presence of MDM2 in the FBXO31 immunoprecipitate, which was increased by lactacystin addition. The reciprocal coimmunoprecipitation experiment showed the presence of myc-FBXO31 in the MDM2 immunoprecipitate.

We have shown previously that FBXO31 itself is phosphorylated by ATM (9). Therefore, it remained possible that the loss of the FBXO31–MDM2 interaction following ATM inhibition was caused, at least in part, by a failure to phosphorylate FBXO31. To rule out this possibility, we analyzed an FBXO31 derivative containing a mutation within the ATM phosphorylation site that prevents phosphorylation (FBXO31-SDM1) (9). Fig. 3D shows that wild-type FBXO31 and the FBXO31-SDM1 mutant interacted with MDM2 comparably.

Finally, we analyzed an MDM2 derivative in which all six ATM phosphorylation sites were mutated (MDM2-6A) (33). A plasmid expressing wild-type MDM2 or MDM2-6A was cotransfected with an FBXO31 expression plasmid into Mdm2−/−, p53−/− MEFs, and MDM2 levels were monitored by immunoblotting. As shown in Fig. 3F, FBXO31 failed to reduce MDM2-6A levels, confirming the essential role of ATM in FBXO31-directed degradation of MDM2.

The experiments described above were performed with ectopically expressed FBXO31 and/or MDM2. We next performed coimmunoprecipitation experiments in camptothecin-treated MCF7 cells to detect an interaction between endogenous FBXO31 and MDM2. The coimmunoprecipitation experiment in Fig. 3F shows that an interaction could be detected between endogenous FBXO31 and MDM2. The FBXO31–MDM2 interaction was lost following treatment of cell extracts with λ-phosphatase but was restored upon the addition of phosphatase inhibitors. Also, as is consistent with the results described above, Fig. 3G shows that the interaction between endogenous FBXO31 and MDM2 was lost following treatment of MCF7 cells with the ATM inhibitor KU-55933. Finally, the coimmunoprecipitation experiment in Fig. S5 shows that an ATM-dependent interaction between endogenous FBXO31 and MDM2 also could be detected in IMR90 cells.

FBXO31 Directs Polyubiquitination of MDM2. Typically, F-box proteins direct polyubiquitination of their substrates, resulting in proteasome-mediated degradation (7, 34). We performed a series of experiments to determine whether FBXO31 can direct polyubiquitination of MDM2. In these experiments, cells were treated with the proteasome inhibitor MG132 to minimize degradation of polyubiquitinated proteins. In the first experiment, MCF7 cells

Fig. 2. FBXO31 directs degradation of MDM2. (A) Quantification of a cycloheximide-chase/immunoblot assay monitoring MDM2 stability in MCF7 cells expressing NS or FBXO31 shRNA following treatment with cycloheximide. The graph shows the ratio of the relative levels of MDM2 and PCNA (control) at each time point; time 0 was set to 100%. (B) Immunoblot monitoring MDM2, p53, and p21 in MCF7 cells expressing empty vector, FBXO31, or FBXO31ΔF. (C) Immunoblot monitoring MDM2 in MCF7 cells expressing vector or FBXO31 and treated in the presence or absence of lactacystin. (D) Quantification of a cycloheximide-chase/immunoblot assay monitoring Flag–MDM2 stability in cycloheximide-treated MCF7 cells expressing GFP (control), FBXO31, or FBXO31ΔF. (E) Immunoblot monitoring GFP–p53, Flag–MDM2, and myc–FBXO31 in Mdm2−/−, p53−/− MEFS coexpressing combinations of p53, MDM2, and FBXO31. β-Actin (ACTB) was monitored as a loading control. (F) Quantification of a cycloheximide-chase/immunoblot assay monitoring GFP–p53 and Flag–MDM2 stability in cycloheximide-treated Mdm2−/−, p53−/− MEFS coexpressing combinations of p53, MDM2, and FBXO31.

half-life of MDM2 and a concomitant increase in the half-life of p53 (see also Fig. S4D).
were cotransfected with plasmids expressing Flag-MDM2, HA-tagged ubiquitin, and either myc-FBXO31 or myc-FBXO31ΔF. Polyubiquitination of MDM2 was assessed by immunoprecipitation of Flag-MDM2 followed by immunoblotting for HA-ubiquitin. The results of Fig. 4A show that ectopic expression of FBXO31, but not FBXO31ΔF, resulted in polyubiquitination of MDM2. Similar results were obtained in a reciprocal coimmunoprecipitation experiment. Notably, FBXO31-directed polyubiquitination of MDM2 was lost after treatment of cells with the ATM inhibitor KU-55933 (Fig. S6A).

To confirm these results, we performed another in vivo ubiquitination experiment involving cotransfection of plasmids expressing Flag-MDM2, His-tagged ubiquitin, and either myc-FBXO31 or myc-FBXO31ΔF. His-ubiquitin-conjugated proteins were purified under stringent, denaturing conditions, followed by immunoblotting for Flag-MDM2. The results confirm that ectopic expression of FBXO31, but not FBXO31ΔF, resulted in polyubiquitination of MDM2 (Fig. S6B).

We also used this His-ubiquitin pull-down assay to confirm the antagonistic relationship of MDM2 and FBXO31 on polyubiquitination of p53. In p53-negative H1299 cells we ectopically expressed His-ubiquitin with GST-p53 alone, GST-p53 and Flag-MDM2, or GST-p53, Flag-MDM2, and myc-FBXO31. Polyubiquitinated p53 was detected by purifying His-ubiquitin-conjugated proteins followed by immunoblotting for GST-p53. The results show that ectopic expression of MDM2 resulted in a substantial increase in polyubiquitination of p53, which was counteracted by the coexpression of FBXO31 (Fig. S6C).

The ubiquitination assays described above were performed with ectopically expressed proteins. We next performed an additional in vivo ubiquitination experiment to confirm that endogenous FBXO31 could polyubiquitinate endogenous MDM2. Extracts from untreated or camptothecin-treated MCF7 cells expressing either an NS or FBXO31 shRNA were immunoprecipitated with an anti-MDM2 antibody, and the immunoprecipitate was analyzed by immunoblotting with an anti-ubiquitin antibody. As expected, the results of Fig. 4B show that camptothecin treatment led to a large increase in polyubiquitinated MDM2. Notably, knockdown of FBXO31 substantially reduced the amount of polyubiquitinated MDM2 in camptothecin-treated cells. These results indicate that FBXO31 is required for polyubiquitination of MDM2 following DNA damage.

Finally, we performed an in vitro ubiquitination assay. Previous studies have shown that MDM2 has auto-ubiquitinating activity in vitro in the presence of an E1 ubiquitin-activating enzyme and E2 ubiquitin-conjugating enzyme (35, 36). Therefore, we used a previously described catalytically inactive MDM2 mutant, MDM2(C464A) (35). In addition to MDM2(C464A), the reaction mixtures contained or lacked the known cofactors (E1, E2, ubiquitin, and ATP), ATM, and the SCF/myc-FBXO31 complex purified from transfected 293T cells. The results in Fig. 4C show that in vitro polyubiquitination of MDM2(C464A) was dependent on the addition of the known cofactors, ATM, and the myc-SCF/FBXO31 complex.

Discussion

In this report we show an essential role for FBXO31 in MDM2 degradation following genotoxic stress that is summarized in the schematic model shown in Fig. 4D and discussed below. Following DNA damage, FBXO31 is phosphorylated by ATM, resulting in increased levels of FBXO31. FBXO31, as part of the SCF complex, then interacts directly with and mediates the degradation of MDM2, which is dependent on the phosphorylation of MDM2 by
ATM. The decreased MDM2 results in increased levels of p53, which promotes growth arrest and senescence through transcriptional activation of p21 and other p53 target genes. Thus, FBXO31 is essential for the classic robust increase in p53 levels following DNA damage.

We have shown previously that in p53-deficient SK-MEL-28 cells FBXO31 also can induce G1 arrest following DNA damage through interaction with and degradation of cyclin D1 (9). Thus, following genotoxic stress, FBXO31 can induce growth arrest through two independent pathways that differ with regard to both substrates and p53 dependence.

Previous studies have shown that in response to DNA damage, MDM2 degradation also is mediated by the F-box protein beta-transducin repeat containing E3 ubiquitin ligase protein (b-TRCP), also called BTRC) and requires phosphorylation of MDM2 by CKI-δ (25). Although our results do not rule out the possibility that b-TRCP contributes to MDM2 degradation, FBXO31 appears to have the predominant role, at least in the cell types we analyzed (see, for example, Fig. 3C).

ATM is considered the main transducer of the DNA damage response that is activated by double-strand breaks (37). Therefore it is notable that after DNA damage ATM phosphorylates both FBXO31, leading to its stabilization, and MDM2, enabling interaction with and degradation by FBXO331. Collectively, the results presented here highlight the critical function of FBXO31 in the DNA damage response and provide further support for the role of FBXO31 as a tumor suppressor.

Materials and Methods

DNA replication and senescence assays are described in SI Materials and Methods.

Cell Lines and Culture. MCF7, IMR90, H1299, and 293T cells were obtained from ATCC and were grown as recommended. Cell lines stably expressing empty vector, myc-FBXO31, or myc-FBXO31ΔF were generated by retroviral transduction as described (9). Cells were treated with camptothecin (20 μM; Sigma) or γ-irradiation (20 Gy) for 45 or 90 min, MG132 (10 μM; Sigma) for 4 h, lactacystin (5 μM; Calbiochem) for 8 h; or KU-55933 (10 μM; Tocris Bioscience), caffeine (1 mM; Sigma), LY294002 (10 μM; Cayman Chemical), CR8 (10 μM; Tocris Bioscience), D4476 (1 μM; Cayman), or rapamycin (5 μM; Calbiochem) for 24 h. FBXO31 KD cells were generated using lentiviral shRNAs (FBXO31-1, TGGTGTGACAGTGAGCCGAGCAAAGTGCTTCAAATGTAATGAAAGCCCAA-GATGTATTACATTAGAACTTTGGCTGCTACTGTCGGA and FBXO31-2, TGGTGTGACAGTGAGCCGAGCAAAGTGCTTCAAATGTAATGAAAGCCCAA-GATGTATTACATTAGAACTTTGGCTGCTACTGTCGGA; Open Biosystems/GE Dharmacon) as described (9). Mdm2Δ−/−, p53Δ−/− MEFS (provided by Stephen Jones, University of Massachusetts Medical School, Worcester, MA) were transfected with pCMV-MDM2-WT and pCMV-MDM2-6A plasmands (provided by Jiandong Chen, Moffett Cancer Center, Tampa, FL). HCT116 cells (14) were used as a tool. P. Vogelstein of Johns Hopkins University, Baltimore, and were grown in RPMI1640 medium containing 10% (vol/vol) FBS.

Immunoblotting. Protein extracts were prepared and immunoblotting was performed as described (9) using the following antibodies: mouse monoclonal MDM2 (A81; Calbiochem), rabbit polyclonal MDM2 (N20; Santa Cruz), MCF7 (Bethyl Laboratories, Inc.), phos- pho-ATM Ser1981 (Cell Signaling), ATM (Cell Signaling), p21 (Cell Signaling), monoclonal p53 (DO1; Santa Cruz), FBXO31 (Bethyl Laboratories, Inc.), phos-

Cycloheximide Chase. For the experiments monitoring endogenous MDM2, MCF7 or IMR90 cells were transfected with a lentivirus expressing an NS or FBXO31 shRNA and puromycin selected for 5 d. Cells then were treated with cycloheximide (100 μM; Sigma). For the experiments monitoring Flag-MDM2, MCF7 cells or 293T cells were cotransfected with a plasmid expressing Flag-MDM2 (provided by Ze’ev Ronai, Sanford-Burnham Medical Research Institute, La Jolla, CA) and a plasmid expressing GFP (pEGFP-C1; Clontech), myc-FBXO31, or myc-FBXO31ΔF. Thirty hours later, cells were treated with cycloheximide...
Total RNA was isolated and reverse transcribed (5 μg for cDNA) and used for purification of His6-tagged proteins by Ni-NTA beads. The cell pellet was lysed in buffer A [6 M guanidinium \(\text{HCl}, 1.0 \text{ M NaHPO}_4/\text{Na}_2\text{HPO}_4, 0.01 \text{ M Tris-Cl (pH 8.0),} 5.0 \text{ mM imidazole,} 10.0 \text{ mM \(\beta\)-mercaptoethanol} and incubated with Ni-NTA beads (Qiagen) for 4 h at room temperature. The beads were washed with buffers A, B, and C (0.1 M NaPO\(_4\)/NaHPO\(_4\), 0.01 M Tris-Cl (pH 8.0), 10.0 M \(\beta\)-mercaptoethanol), and C (0.1 M NaPO\(_4\)/NaH\(_2\)PO\(_4\), 0.01 M Tris-Cl (pH 6.3), 10.0 M \(\beta\)-mercaptoethanol), and bound proteins were eluted with buffer D [200 mM imidazole, 0.15 M Tris-Cl (pH 6.7), 30% (vol/vol) glycerol, 0.72 M \(\beta\)-mercaptoethanol, 5% (wt/vol) SDS]. The eluted proteins were analyzed by immunoblotting.

For the in vivo assay, extracts from MCF7 cells were treated with DMSO or camptothecin (25 μM for 45 min) and MG132 (10 μM for 6 h) before immunoprecipitation.

The in vitro ubiquitination assay was performed as described (9). Briefly, 293T cells were cotransfected with plasmids encoding myc-CUL1, myc-PO1, and myc-BXO31. Complexes containing BXO31/CUL1/SP1/K1/ROC were immunopurified from the cell lysate using anti-myc beads and were incubated with recombinant GST-MDM2/C464A (provided by Allan Weissman, National Cancer Institute, Bethesda), purified recombinant active ATM (provided by Tanya Paull, University of Texas at Austin, Austin, TX), 0.1 mM E1 (Boston Biochem), 0.25 mM E2 (UBCH5A; Boston Biochem), and 2.5 μg/mL ubiquitin (Boston Biochem) in ubiquitin assay buffer [10 mM Tris (pH 7.5), 100 mM NaCl, 2.5 mM MgCl\(_2\), 2.5 mM ATP, 1 mM DTT, and 10 mM MnCl\(_2\)] at 2 h at 30 °C, and were analyzed by immunoblotting.

Statistical Analysis. All quantitative data were collected from experiments performed in at least triplicate and are expressed as mean ±SD. Differences between groups were assessed using two-tailed Student t test using Microsoft Excel.

ACKNOWLEDGMENTS. We thank Jiandong Chen, Stephen Jones, Tanya Paull, Ze’ev Ronai, Allan Weissman, and Bert Vogelstein for providing reagents and Sara Deibler for editorial assistance. This work was supported in part by a Ramalingaswami Fellowship from the Department of Biotechnology, Ministry of Science and Technology, Government of India (to M.K.S.). M.R.G. is an investigator of the Howard Hughes Medical Institute.