May 20th, 5:00 PM - 7:00 PM

Pilot Testing a Novel Treatment for Inflammatory Bowel Disease

Barbara C. Olendzki
University of Massachusetts Medical School

Gioia Persuitte
University of Massachusetts Medical School

Taryn Silverstein
UMass Memorial Health Care

See next page for additional authors

Follow this and additional works at: https://escholarship.umassmed.edu/cts_retreat

Part of the Dietetics and Clinical Nutrition Commons, Digestive System Diseases Commons, Gastroenterology Commons, and the Translational Medical Research Commons

Olendzki, Barbara C.; Persuitte, Gioia; Silverstein, Taryn; Baldwin, Katherine; Cave, David; Zawacki, John K.; Bhattacharya, Kanishka; and Ma, Yunsheng, "Pilot Testing a Novel Treatment for Inflammatory Bowel Disease" (2011). UMass Center for Clinical and Translational Science Research Retreat. 15.
https://escholarship.umassmed.edu/cts_retreat/2011/posters/15

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in UMass Center for Clinical and Translational Science Research Retreat by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
Presenter Information
Barbara C. Olendzki, Gioia Persuitte, Taryn Silverstein, Katherine Baldwin, David Cave, John K. Zawacki, Kanishka Bhattacharya, and Yunsheng Ma

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

This poster is available at eScholarship@UMMS: https://escholarship.umassmed.edu/cts_retreat/2011/posters/15
Pilot Testing a Novel Treatment for Inflammatory Bowel Disease

Barbara Olendzki, RD, MPH; Gioia Persuitte, MPA; Taryn Silverstein, DO; Katherine Baldwin, MD; David Cave, MD, PhD; John Zawacki, MD; Kanishka Bhattacharya, MD, Yunsheng Ma, MD, PhD

University of Massachusetts (UMass) Medical School and UMass Memorial Health Care, Worcester, MA

BACKGROUND and OBJECTIVE

Inflammatory Bowel Disease (IBD), which includes Crohn's disease (CD) and ulcerative colitis (UC), are chronic non-specific inflammatory conditions. Standard IBD treatment typically employs a combination of anti-inflammatory and immune suppressive medications; however, the pharmacological approach is not by itself curative. The Anti-Inflammatory Diet for IBD (IBD-AID), which is derived and augmented from The Specific Carbohydrate Diet (SCD), is a nutritional regimen that restricts the intake of complex carbohydrates such as refined sugar, gluten-based grains, and certain starches from the diet. These carbohydrates are thought to provide a substrate for pro-inflammatory bacteria. The second component of the diet involves the ingestion of pre- and probiotics to help restore an anti-inflammatory environment.

Study Objective

To assess the efficacy and feasibility of the Anti-Inflammatory Diet (IBD-AID) intervention for the treatment of IBD.

METHODS

Intervention: Patients were recruited from the UMMHC gastroenterology clinic upon referral from their gastroenterologist. They received individual instruction of the diet and its restrictions through 5 individual nutrition sessions over approximately a 6-10 month period. Support materials were provided. Cooking classes were also available to the patients.

Outcome Survey Measures:

Ulcerative Colitis: Modified Truelove and Witts Severity Index (MTLW)
- Scoring system of 0-21 points, clinical response is defined as a decrease from baseline score of 50% or greater, or less than 10 on 2 consecutive days
- Number of stools/day
- Nocturnal stools
- Visible blood in stools
- Fecal incontinence
- Abdominal pain/cramping
- General well-being
- Abdominal tenderness
- Use of anti-diarrheal drugs

Crohn’s Disease: Harvey Bradshaw Index (HBI)
- General well-being (0 = very well, 1 = slightly below average, 2 = poor, 3 = very poor, 4 = terrible)
- Abdominal pain (0 = none, 1 = mild, 2 = moderate, 3 = severe) number of liquid stools per day
- Abdominal mass (0 = none, 1 = dubious, 2 = definite, 3 = tender)
- Complications, with one point for each.

RESULTS

<table>
<thead>
<tr>
<th>Age</th>
<th>Sex</th>
<th>Disease</th>
<th>Disease duration</th>
<th>Extent disease</th>
<th>Dx Based on</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>F</td>
<td>CD</td>
<td>8 years</td>
<td>Rectum to transverse colon</td>
<td>Colonscopy</td>
</tr>
<tr>
<td>47</td>
<td>F</td>
<td>CD</td>
<td>4 years</td>
<td>Distal ileum</td>
<td>Colonscopy & MRI</td>
</tr>
<tr>
<td>39</td>
<td>F</td>
<td>CD</td>
<td>9 years</td>
<td>Distal ileum</td>
<td>Small bowel follow through</td>
</tr>
<tr>
<td>24</td>
<td>F</td>
<td>CD</td>
<td>14 years</td>
<td>Small bowel</td>
<td>Capsule endoscopy, sigmoidoscopy</td>
</tr>
<tr>
<td>39</td>
<td>M</td>
<td>CD</td>
<td>7 years</td>
<td>Ileocecal, perianal area</td>
<td>Colonscopy and capsule endoscopy</td>
</tr>
<tr>
<td>69</td>
<td>M</td>
<td>UC</td>
<td>24 years</td>
<td>Descending colon & rectum</td>
<td>Colonscopy</td>
</tr>
<tr>
<td>19</td>
<td>F</td>
<td>UC</td>
<td>5 years</td>
<td>Pan-colonic</td>
<td>Colonscopy</td>
</tr>
<tr>
<td>40</td>
<td>M</td>
<td>CD</td>
<td>1 year</td>
<td>Colonic</td>
<td>Colonscopy & MRI</td>
</tr>
<tr>
<td>41</td>
<td>M</td>
<td>CD</td>
<td>8 years</td>
<td>Distal ileum</td>
<td>CT scan & colonscopy</td>
</tr>
<tr>
<td>37</td>
<td>F</td>
<td>CD</td>
<td>4 years</td>
<td>Ileocecal</td>
<td>CT scan & pathology from surgery</td>
</tr>
<tr>
<td>70</td>
<td>F</td>
<td>UC</td>
<td>19 years</td>
<td>Pan-colonic</td>
<td>Colonscopy & histology</td>
</tr>
</tbody>
</table>

Therapy Legend:
- S=steroid dependent, ASA= 5-ASA derivatives, IM=immunomodulator, aTNF=Anti-tumor necrosis factor antibody

Age

<table>
<thead>
<tr>
<th>Sex</th>
<th>Disease</th>
<th>Prior Tx Include</th>
<th>Recent Tx</th>
<th>HBI/MTLW before</th>
<th>HBI/MTLW after</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>F</td>
<td>ASA, IM, aTNF</td>
<td>ASA + IBD-AID</td>
<td>HBI 12</td>
<td>3</td>
</tr>
<tr>
<td>47</td>
<td>F</td>
<td>S, IM, aTNF</td>
<td>S(taper) + IBD-AID</td>
<td>HBI 9</td>
<td>2</td>
</tr>
<tr>
<td>39</td>
<td>F</td>
<td>S,IM</td>
<td>IM + IBD-AID</td>
<td>HBI 12</td>
<td>2</td>
</tr>
<tr>
<td>24</td>
<td>F</td>
<td>S,ASA, IM, aTNF</td>
<td>S(taper), IM + IBD-AID</td>
<td>HBI 15</td>
<td>0</td>
</tr>
<tr>
<td>39</td>
<td>M</td>
<td>IM, aTNF</td>
<td>IBD+AID</td>
<td>HBI 20</td>
<td>0</td>
</tr>
<tr>
<td>69</td>
<td>M</td>
<td>ASA, IM, aTNF</td>
<td>ASA, IM + IBD-AID</td>
<td>MTLW n/d</td>
<td>2; “improved”</td>
</tr>
<tr>
<td>19</td>
<td>F</td>
<td>S,ASA, IM, aTNF</td>
<td>ASA, IBD-AID</td>
<td>MTLW 6</td>
<td>0</td>
</tr>
<tr>
<td>40</td>
<td>M</td>
<td>S,ASA, IM</td>
<td>IM + IBD-AID</td>
<td>HBI 15</td>
<td>2</td>
</tr>
<tr>
<td>41</td>
<td>M</td>
<td>S,ASA, IM</td>
<td>IM + IBD-AID</td>
<td>HBI 15</td>
<td>2</td>
</tr>
<tr>
<td>37</td>
<td>F</td>
<td>S,ASA, aTNF; elemental diet</td>
<td>aTNF + IBD-AID</td>
<td>HBI 8</td>
<td>0</td>
</tr>
<tr>
<td>70</td>
<td>F</td>
<td>ASA, IM, aTNF</td>
<td>aTNF + IBD-AID</td>
<td>MTLW 8</td>
<td>0</td>
</tr>
</tbody>
</table>

Probiotic Foods
- Aged cheeses
- Dark chocolate
- Fermented cabbage
- Kefir
- Miso soup
- Microalgae
- Pickles
- Yogurt (active)

Prebiotic Foods
- Artichokes
- Asparagus
- Bananas
- Chicory root
- Garlic
- Honey
- Leeks
- Oats
- Onions

Conclusion

This case series indicates the potential for the IBD-AID to be used as an adjunctive or alternative therapy for the treatment of IBD. Notably, 9 out of 11 patients were able to be managed without anti-TNF therapy, and 100% of the patients had their symptoms reduced. To make clear recommendations for its use in clinical practice, randomized trials are needed alongside strategies to improve acceptability and compliance with the IBD-AID.