May 20th, 5:00 PM - 7:00 PM

Patterns of Complex Comorbidity in Older Patients with Heart Failure

Jane S. Saczynski
University of Massachusetts Medical School

Jerry H. Gurwitz
University of Massachusetts Medical School

Sandhyasree Padmanabhan
University of Massachusetts Medical School

See next page for additional authors

Follow this and additional works at: https://escholarship.umassmed.edu/cts_retreat

Part of the [Cardiovascular Diseases Commons](https://escholarship.umassmed.edu/circulatory-system), and the [Epidemiology Commons](https://escholarship.umassmed.edu/epidemiology)

Saczynski, Jane S.; Gurwitz, Jerry H.; Padmanabhan, Sandhyasree; Goldberg, Robert J.; Magid, David J.; Smith, David H.; Sung, Sue Hee; and Go, Alan S., "Patterns of Complex Comorbidity in Older Patients with Heart Failure" (2011). *UMass Center for Clinical and Translational Science Research Retreat*. 14.
https://escholarship.umassmed.edu/cts_retreat/2011/posters/14

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in UMass Center for Clinical and Translational Science Research Retreat by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
Presenter Information
Jane S. Saczynski, Jerry H. Gurwitz, Sandhyasree Padmanabhan, Robert J. Goldberg, David J. Magid, David H. Smith, Sue Hee Sung, and Alan S. Go

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

This poster is available at eScholarship@UMMS: https://escholarship.umassmed.edu/cts_retreat/2011/posters/14
Patterns of Complex Comorbidity in Older Patients with Heart Failure

Jane S. Saczynski, PhD1,2; Jerry H. Gurwitz, MD1,2; Sandhyasree Padmanabhan, MS1,2; Robert J. Goldberg, PhD1,2; David J. Magid, MD3; David H. Smith, PhD4; Sue Hee Sung, MPH5; Alan S. Go, MD5.

1Meyers Primary Care Institute; 2University of Massachusetts Medical School; 3 Kaiser Permanente Colorado; 4 Kaiser Permanente Northwest; 5 Kaiser Permanente Northern California

BACKGROUND

Heart failure (HF) carries a high burden of comorbidity with approximately one half of patients with HF having at least one additional comorbid condition present. Rates of comorbidity in patients with HF have steadily increased over the past 2 decades.

OBJECTIVE

To examine patterns of comorbidity among older patients with HF in the Cardiovascular Research Network PRESERVE cohort.

METHODS

PRESERVE Cohort

Data are from the CVRN PRESERVE cohort which is a multicenter cohort of 37,054 patients [mean age = 74 years (SD = 12.4 yrs); 46% female] with HF diagnosed between 2005 and 2008 currently being conducted at 4 CVRN sites: KPNC, KPCO, KPNW, and FCHP. The primary data source for the PRESERVE cohort was the HMO Research Network Virtual Data Warehouse.

Identification of Coexisting Diseases

Coexisting illnesses at the time of HF diagnosis were based on diagnoses and procedures mapped to relevant International Classification of Diseases, Ninth Edition (ICD-9) codes. For the purposes of characterizing clusters of comorbidities, we focused on coexisting conditions with a prevalence rate of ≥3%.

STATISTICAL ANALYSIS

We used the Agglomerative Clustering technique to characterize patterns of comorbidity. Over multiple iterations, each condition is clustered with the condition with which it has the highest squared correlation. This process is repeated to determine whether assigning a condition to a different cluster increases the amount of explained variance [ranging from 1.0 (all variance explained) to 0.0 (no variance explained)]. The conditions in each cluster are as correlated as possible among themselves and as uncorrelated as possible with conditions in other clusters.

The dendogram (Figure 1) is a graphical display of cluster results.

RESULTS

Burden of Comorbidity

There was a high degree of comorbidity and multimorbidity among patients with HF. (Table 1) Hypertension and arrhythmias were the comorbidities of HF that occurred most often in the absence of other chronic conditions (4.8% and 4.7%, respectively). The average number of comorbid conditions varied from 3.5 to 5.2.

Patients with HF and unstable angina or other thromboembolic disorders had the highest multimorbidity (mean = 5.2 conditions), whereas those with HF and hypertension had the lowest (mean = 3.5).

Clustering of Comorbidities

A five-cluster structure was derived. (Figure 1)

Cluster 1: Dyslipidemia, Hypertension, Diabetes Mellitus, Visual Impairment

Cluster 2: Acute Myocardial Infarction, Unstable Angina, Thromboembolic Disorder, Dementia

Cluster 3: Aortic Valvular Disease, Cancer, Hearing Impairment, Arrhythmia

Cluster 4: Peripheral Arterial Disease, Stroke

Cluster 5: Lung Disease, Liver Disease, Depression

DISCUSSION & CONCLUSIONS

• Cluster analysis is an innovative approach to examining the co-occurrence of diseases and allows for identification of broad patterns of multi-morbidity beyond the pairings of diseases or disease counts.

• Patients with HF have a high rate of multi-morbidity, with an average of 4 co-occurring conditions. Intuitive and unintuitive patterns of clustering were identified.

• Randomized clinical trials in HF will need to include more diverse patient populations in order to adapt to the increasingly complex patient population.

• A cluster analysis approach to characterizing patterns of comorbidity may help indentify important patient subgroups.

Table 1. Patients with Heart Failure Affected by Each Chronic Disease and Degree of Multi-Morbidity (N = 37,054)

<table>
<thead>
<tr>
<th>Chronic Disease</th>
<th>All cases, n</th>
<th>Cases w/out multi-morbidity, %</th>
<th>Co-occurring conditions, Mean (± SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute Myocardial Infarction</td>
<td>4,852</td>
<td>1.9</td>
<td>4.1 (2.0)</td>
</tr>
<tr>
<td>Unstable Angina</td>
<td>2,467</td>
<td>0.0</td>
<td>5.2 (2.0)</td>
</tr>
<tr>
<td>Thromboembolic Disorder</td>
<td>2,467</td>
<td>0.0</td>
<td>5.2 (2.0)</td>
</tr>
<tr>
<td>Dementia</td>
<td>4,363</td>
<td>3.6</td>
<td>3.9 (2.0)</td>
</tr>
<tr>
<td>Lung Disease*</td>
<td>11,121</td>
<td>3.6</td>
<td>3.7 (1.9)</td>
</tr>
<tr>
<td>Liver Disease</td>
<td>1,245</td>
<td>2.8</td>
<td>3.9 (2.0)</td>
</tr>
<tr>
<td>Dyslipidemia</td>
<td>16,690</td>
<td>2.7</td>
<td>3.7 (1.8)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>21,121</td>
<td>4.8</td>
<td>3.5 (1.8)</td>
</tr>
<tr>
<td>Diabetes Mellitus</td>
<td>7,741</td>
<td>1.5</td>
<td>4.2 (1.8)</td>
</tr>
<tr>
<td>Aortic Valvular Disease</td>
<td>7,472</td>
<td>3.0</td>
<td>3.8 (1.9)</td>
</tr>
<tr>
<td>Peripheral Arterial Disease</td>
<td>3,156</td>
<td>2.1</td>
<td>4.2 (2.0)</td>
</tr>
<tr>
<td>Depression</td>
<td>6,605</td>
<td>2.6</td>
<td>4.1 (2.0)</td>
</tr>
<tr>
<td>Cancer</td>
<td>2,536</td>
<td>3.6</td>
<td>3.8 (1.9)</td>
</tr>
<tr>
<td>Visual Impairments</td>
<td>15,089</td>
<td>3.2</td>
<td>3.7 (1.8)</td>
</tr>
<tr>
<td>Hearing Impairment</td>
<td>6,789</td>
<td>3.3</td>
<td>3.8 (1.9)</td>
</tr>
<tr>
<td>Stroke**</td>
<td>7,469</td>
<td>1.9</td>
<td>4.2 (1.9)</td>
</tr>
<tr>
<td>Arrhythmia***</td>
<td>8,857</td>
<td>4.7</td>
<td>3.7 (1.9)</td>
</tr>
</tbody>
</table>

* Based on inpatient primary discharge diagnoses: 440.0, 444.1, 444.21, 444.22, 444.81, 444.89, 557.0, 557.1, 557.9.
** Includes ischemic stroke, transient ischemic attack, and cerebrovascular disease; 490-496; 518
† Includes atrial fibrillation, atrial flutter, ventricular fibrillation, ventricular tachycardia

This project was supported by Award Number U19HL091179 from the National Heart, Lung, And Blood Institute.